On Certain Functional Equations, |l

By Tadashi Kobayashi

The present paper is a continuation of our previous paper [2]. In that
paper we considered certain functional equations and proved the
following fact. '

Let A(z), B(z), P(z) and Q(z) be nonconstant regular functions in the
annulus 0 <|z| < + oo. Suppose that these four functions satisfy the
functional equation

(*) P(z) — Q(z) = A(ze"™) — B(ze?)

in this annulus. Suppose further that the functions P(z) and Q(z) have
poles at the point at infinity. Then the order of the pole of P(z) is
equal to that of Q(z).

The object of this paper is to give a further investigation and to

show the next theorem.
- Theorem. Let A(z), B(z), P(z) and Q(z) be nonconstant regular
functions satisfying the functional equation (*). Suppose that the
functions P(z) and Q(z) both have poles at the point at infinity. Then
P(z) and Q(z) differ by a constant.

By changing z to 1/z in the functional equation (*) and by setting
Ax(z) = —A(1l/z), B«(z) = —B(1/2), Px(z) = —P(1/z) and Q«(z) = —
(1/z), we can easily restate our theorem as follows.

Let A(z), B(z), P(z) and Q(z) be nonconstant regular functions which
satisfy the functional equation (*). If the functions P(z) and Q(z)
have poles at the origin, then the difference P(z)—Q(z) reduces to a
constant function.

Let f(z) be an arbitrary nonconstant regular function in the annulus
0 <|z| < + oc, and let us set

S(z) = z exp(f(z)), Si2) = z,
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Su(z) = S.(S(z)) (n=1,2,3,..).
Then it is clear by induction that

Su(z) = z exp@ (S

for each natural number n. Hence if

Az) = _§ f(S{z)), P(z) = Zo F(Si(z)),
where m and n are nonnegative integers, then
m+n+1

P(z) — A(ze™) = ;0 F(SH=)).

Accordingly there are various kind of functions which satisfy the
functional equation (*). Furthermore our theorem fails to hold if the
condition on the functions P(z) and Q(z) is removed.

1. Preliminary. Let A(z), B(z), P(z) and Q(z) be nonconstant regular
functions in the annulus 0 <|z|<+4oco which satisfy the functional
equation (*). For the sake of simplicity we set

(1.1) Py(z) = 2™, Qu(z) = ze?.
Then the functional equation (*) becomes
(1.2) P(z) — Q(z) = A(Px(z)) — B(Qx(2)).
Suppose that the functions P(z)}) and Q(z) have poles at the point at
infinity. Then by our previous theorem the order of the pole of P(z)
must be equal to that of Q(z). Hence with some natural number 7,
(1.3) P(z) = (a+o(1))z", Q(z) = (b+o(1))z"
near the point at infinity, where a and b are nonzero constants.

Hereafter we may suppose without loss of generality that the constant
b is real positive. For the function Q(z), by making use of (1.3), we can
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define 2n differentiable functions zi{t) (j=1, ..., 2n) of ¢t for t = 0 such
that

(1.4) lim 26| = + oo,
(1.5) | lim arg zAt) = (27—1)7 /2n,
(1.6) | Qx(zi(t)) = Rexp((—1)""i¢)

for t = 0, where R is a suitable real positive constant. With the help of
(1.4)-(1.6) we easily deduce

t

1.7 li - = (—1Y1b.
0 My
We set the functions
(1.8) wi(t) = Px(z(t))

| for t =2 0 (=1, ..., 2n). Then the functional equation (1.2) yields
P(zit)) — QzA21)) = A(wi(2)) — B(Qx(zA1))),

so that by means of (1.3), (1.4) and (1.6),

(1.9) lim AwAD) _
= (z4E)

for =1, ..., 2n. On the other hand by the definitions (1.1) and (1.8), and
by the property (1.6),

1 +z,(t)P’ (2A2))
1+2)Q (z(2)) °

wi(t) _

(1.10) wit)

(___1)j+l l

so that the asymptotic behaviours (1.3) imply

. wj (L) 1Nl s G
(1.11) 1L%W‘( 1) 1y
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for =1, ...,2n. Our task is to analyze these logarithmic derivatives
w] (t)/wit) explicitly. For this purpose we introduce the auxiliary
function

(1.12) f2) = Q@) — 2 Pe2)

This function f(z) is analytic in the annulus 0 <|z|< + oo, and it is
regular or has a pole at thé point at infinity. In the latter case its order
of the pole is at most n—1.

In what follows our consideration is divided into the following five
cases.

Case 1 Neither the real part nor the imaginary part of the
constant a is zero. |

Case 2 The constant a is purely imaginary and the function f(z) is
regular at the point at infinity.

Case 3 The constant a is purely imaginary and the function f(z) has
a pole at the point at infinity.

Case 4 The constant a is real and the function f(z) is regular at the
point at infinity.

Case 5 The constant a is real and the function f(z) has a pole at
the point at infinity.

2. Construction of curves. First of all we consider the case 1. From
now on we denote the real part and the imaginary part of the
constant a by a™ and ax, respectively.

‘Let u be a positive number such that

R+u
R

(2.1) lax| log > 4br,

where R is the real positive quantity of (1.6). Let [ be the real positive
number defined with

‘ 3 R+u
(2.2) { = exp b log R
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It is clear frpm (1.3) that
1 + 2P (z) = (na + o(1))z",
1 + 2Q'(2) = (nb + o(1))z"

near the point at infinity. Hence it is possible to find a positive
number Ry (>1) such that

z 1 1
3 i@ s =
4+2P'(z) _a|_ L . .
2.4) T — 5| = g5 min(a*, las)

for values of z with|z| =Rx. Since 14+2zQ’(z) is not identically zero by
assumption, there surely exists a real number 7 (| v | = 7 ) such that all
the roots of the equation arg Qu«(z) = 7 satisfy Qx(z) # 0. Let £ be an
even or odd integer between 1 and 2n according to whether the
product a®ay is positive or negative, and we set

(2.5) t; = (—1)**'r + 2njy G=12..).

Under these notations we prove the following

Lemma 1. /f |zdt)| >IR«, then there exists the differentiable
Junction uit) of t for the interval 0 =t < u such that u0) = zu(t,)
and

(2.6) Qx(uit)) = (R+t)e”

for 0 =t = u. Furthermore the double inequality

(2.7 ' % =

holds there.
Proof. 1t is clear from (1.6) and the definition (2.5) that Qx«(z(t;) =
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Reé'7, so that Qi(zt,)) #+ 0. Hence it is possible to define a differentiable
function u;(t) of ¢t for 0 = t = u” satisfying u;(0) = z(t;) and the above
(2.6). Here u" is a real positive number and it may be very small in
general. Since [ is greater than one and |u;(0)| > IR« by assumption, we
may suppose from the continuity that |u, )| > R4 for 0=t = u'. It
follows from (2.6) that

(RH+1)Q%(ut)u; (t) = Qx(uit))
for 0 =t = u’. Hereby from the definition (1.1),

wi(t) 1

RED U~ TT 0@ )

there. Since |u,(#)| > R« > 1, the inequality (2.3) yields

u; (t) l <
ult) | = 2nb

(R+t)|

for 0 =t = u’. It therefore follows that

u,(t) R+t
llo 2,0) H= nb 8 R

for 0=t = u’. Hence if u" < u, then the double inequality (2.7) holds
for 0 =t = u', because of the definition (2.2). By this fact we can
extend the function wu,(t) analytically to the function defined on the
interval 0 = ¢t = u. Of course this extension satisfies (2.6) and (2.7).
This completes the proof.

Evidently from the definition (2.5), the numbers ¢; go to infinity with
7, so that by means of (1.4), |z(¢;)| > IR« for all large j. Hence we can
define the functions u,(¢) on the interval 0 =t = u which satisfy (2.6)
and (2.7). We now set

(2.8) - ule) = Pylut))

for 0 =t = u. It then follows from (2.6) that
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vi(e) _ 1+u@)P (u(2))
vt) 1+ u,(8)Q (uit))

(2.9) (R-+1)

for 0 =t = u. Since |uft)| > Rx by (2.7), the inequality (2.4) implies

1

v; (£)
(2.10) (R+t) 7+ — b

4l
vi(t) b1

*l’

min(|a*|, laxl)

for real values of ¢t with 0 =t =< u. On the other hand we insert the
functions u,(t) into the functional equation (1.2). Then we deduce

P(uft)) — Qut)) = A(vi(t)) — B(Qx(u(2)))
for 0 = ¢ = u. It thus follows from (2.6) that the functions
A(vit)) — Put)) + Quit))

are bounded uniformly. Furthermore with the aid of (2.7), the
functions wu;(t) become infinite uniformly as j tends to infinity. It
therefore follows from (1.3) that /

(2.11) IijZ—): —
i (uft))
uniformly for 0 =t =< u.
2.1. In this subsection we assume that the real part of the constant
a is positive, that is, that a* > 0. Let t* be a positive number such
that |z«(t)] > Rx for t = t*. By referring to (1.10) and (2.4), we have

1

- wilt) _
(2.12) (=1 i——+ o

4=
wit) b1

min(|a*|, |ax|)

for all values of t+ with # = t*. Since (—1)a*ay > 0 by definition and

a* > 0 by assumption, (—1)’ax must be positive. Hence the above
(2.12) gives

(2.13) Re wit) = 2b
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i WEE) o a*

(2.14) (—1) Im——————wk(t) T

for t = t*. By virtue of (2.13), the function |wt)| is strictly increasing
for t = t* and becomes infinite when ¢ goes to infinity. More precisely
by means of (1.11), using 'Hospital’s rule, we have

lim + log wit)| = 1%
It therefore follows from (1.7) that
. (zk(t))n _
(2.15) 1,13.3 4w,,(t) =0,
so that by means of (1.9),
(2.16) lim Awd) _
tmo0 wk(t)

By p(x) we denote the inverse function of |wt)| defined for x = x*,
where z* = |wt*)|. Then this function p(x) satisfies p(x*) = t* and

(2.17) |lwip(x)| = x

for x = z*. Let I(t) stand for a branch of the argument of w(t) for
t = t*. By means of (2.14), (—1)**'/(¢) is increasing steadily there, so
that the composite (—1)**'/(p(x)) also increases for £ = x*. Furthermore
by definition,

(2.18) wi(p(x)) = z exp(l(p(x)))

for real values of x with =z = =*.

Now let j be an arbitrary large integer. Then we may suppose that
the number t; defined with (2.5) satisfies t; = t* and |z«(¢,)| > [R«. For
this number t; we have defined the functions u;j(t) and wv,t) on the
interval 0 = ¢t = u. Since u;(0) = z.(¢,),
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(2.19) vA0) = Py(ui0)) = Px(zlt;) = wilt,)

from (1.8) and (2.8). The function v,(t) satisfies (2.10). It thus follows
that

vl (t)
(2.20) (R+1t) Re vit) = Zb
k v; (1) |y
(2.21) (—1Y(R+1t) Im o(8) = b

for 0 =t =< u. Hence |v,(2)] increases steadily there. For convenience
we denote |v/(0)] and |v{u)| by x; and x;, respectively. Then the
inverse of |{vj(t)| can be defined on the interval x; £ x = x; and moves
increasingly from 0 to # when x does from z; to x;. With g(x) we
denote this inverse function. Note that

= |vA0)| = |wut™)| = x*
by (2.19) and t; = t*. We next set
J(t) = arg vi(t)

for 0 =<t = u, where the branch is chosen so that J(0) = I(t;). Then
with the help of (2.21) this argument J(¢) increases or decreases steadily
for 0 =t = u according to whether & is even or odd. In particular the
composite function (—1)*/(q(x)) is a strictly increasing function of x
for ; = x = z;. Furthermore by means of (2.1) and (2.21) again,

la*’ R+u
2 log R >27x

(2.22) (=D (J(w) — J(0) =

In addition to these facts it is clearly true by the definitions of g(x)
and J(t) that

(2.23) vi(g(x)) = x exp(i/(g(x)))
for real values of x with x; £ x < z;. Consider the function
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L{z) = (= D" 1(p(x)) + (= 1)"J(g(x))

on the interval z; = x = z/. Then L(x) is a continuous strictly
increasing function of x. Since p(x;) = t;, q(x;) = 0 and I(t;) = J(0), we
have L(x;) = 0. On the other hand L(z]) > 2= from (2.22). Hereby we
can find a point z; of the interval such that L(zx;) =2z . To simplify
the notation we set t;/ = p(z;) and u; = ¢g(x;). It then follows that

(2.24) Ju) = (=1 2r + I(#]).
We now define the arcs

Cir=A{wit):t; =t = t]},
(2.25)
CJ_- = {U_,'(t) 0=t = u,-}.

With the help of (2.18) and (2.23), these two arcs are simple and lie
entirely in the annulus z; £|z| = z/. Furthermore by means of (2.18),
(2.23) and (2.24), we have wit]) = v{u;). Hence the arcs C; and C;
have the same initial point and the same final point. Here we divide
the annulus x; = |z| = z/ in two parts by the rays arg z = I(t;), It}).
Then by what 1s shown above the arc C; lies entirely in one part while
the arc C; does in the other. Accordingly the curve C,=C} — C;
which consists of the arc C;/ and the arc C; in the opposite direction
must be simple closed and lie entirely in the annulus |wit)| = |z| =
lwi(t/)|. Evidently the winding number of C; with respect to the origin
1Is 1 or —1.

For all sufficiently large integers j we have defined the functions
u;(t) and v{t) on the interval 0 =< ¢ =< u, and using the functions v,{t),
we have constructed the simple closed curves C;, We need one more
piece of information. Since |v{t)| are increasing for 0 <t <« and
vi{(0) = wi(t;) by (2.19),

loi(t) | = [wat))]

for 0 = t = u. Hence with the aid of (2.7) again,
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u®)|" _ Uzt
O] = lwi)]

there. It thus follows from (2.15) that

(@) _
(2.26) lim =2y =0

uniformly for 0 = ¢t < u. Combining this (2.26) with (2.11) we finally
obtain

. A@) _

uniformly for 0 = ¢t < u. It therefore follows from (2.16) and this (2.27)
that the function A(z)/z converges to zero when z approaches the
point at infinity through the sequence of the simple closed curves C,.
Accordingly by the maximum modulus principle and by the nature of
the curves C,, this function A(z)/z converges to zero as z tends to
infinity. Hence A(z)/z is regular and takes the value zero at the point
at infinity. Consequently the function A(z) must be regular at the point
at infinity. However this clearly contradicts (1.9).

~2.2. Next we suppose that the real part of the constant a is
negative, that is, that a* << 0. Then (—1)as is also negative and the
estimate (2.12) yields

wi (t) | ax|
Re oty = "2b
B+l wi () a*

for t = t*, where t* is the real quantity defined in the previous
subsection. This time the function |w(t)|is strictly decreasing for
t = t* and converges to zero as t becomes infinite. Further by using
(1.11) we obtain
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| Qx|

(2.29) lim © log |wi(t)| = — 1951 < 0.
It thus follows from (1.7) and (2.29) that

(2.30) ELTE (z£)) wilt) = 0,
so that

(2.31) lim wit) Awi()) = 0

by means of (1.9). As before we denote the inverse of |wyt)| by p(x).
Then p(z) is defined for 0 < z < x* and increases from t* to infinite
when x decreases from z* to 0, where x* = |w/(t*)|. Let I(¢) stand for
a branch of the argument of wyt) for ¢t = t*. With the aid of (2.28),
(—1)H(t) is an increasing function of t for t = t*. Hence the composite
(—1)¥(p(x)) increases steadily when x decreases from z* to 0. We next
consider the function vi{t) defined with (2.8). It then follows from (2.10)
that

v () _ a*

(R+1t)Re U,-(t) = %’

" v (1) — |
(2.32) (1" (R4+t) Im o) = b

for 0 = t = u. Hence |v,(t)| decreases monotonically there. Setting x; =
|lv{0)| and x/ =|vi{u)|, we can define the inverse of |v{t)| on the
interval x; = 2 = x;, We denote this inverse function by g(z). Let J(¢)
stand for the branch of the argument of vi(t) with J(0) = I(¢,). Then by
means of (2.32), (—1)*"'J(¢) increases monotonically and satisfies

(2.33) (— 1 (J () — J(0)) = % log R;“

>27%

Note that z; = |v(0)| = |wi¢,)| = lwt*)| = z=*. Then the function
L{z) = (=1 I(p(x)) + (—1)*""J(q(x))
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for x; = x = z,; is continuous strictly decreasing, L(zx;) =0 and L(z])
> 27 by means of (2.33). We can thus take a point x/ such that
Lx)y=2r and z; < z} < zx;, We put ¢/ = plz}) and u, = q(x}).
Then t; <t/ and 0 < u, < u. With these notations we can define the
simple arcs C; and C; by (2.25), and hence the simple closed curve C;
winding around the origin. This time the curve C; lies entirely in the
annulus |wu(t/)| = |z| = |wdt,)|. Therefore the sequence of the curves
C,; converges to the origin when 7 goes to infinity. Taking (2.7) and
(2.19) into account we deduce

[ (u;(t)) vit) | = "] (zE;))" walt)) |7
for 0 = ¢ =< u. It thus follows from (2.30) that
(2.34) lim (u,(2))"v,(2) = 0,
so that with the aid of (2.11)
(2.35) 11152 vi{t)A(vi(t)) = 0

uniformly for 0 = ¢t = u.

Consequently by the definition of the curves C; and by means of
(2.31) and (2.35), the function zA(z) converges to zero as z approaches
the origin through the sequence of the curves C,. It thus follows from
the maximum modulus principle that zA(z) is regular at the origin and
it takes the value zero there. Hence A(z) is also regular at the origin.
However this contradicts (1.9). Accordingly the case 1 never occurs.

3. Case 2. We suppose that the constant a is purély imaginary and
the auxiliary function f(z) is regular at the point at infinity. Let %2 be an
integer between 1 and 2n satisfying (—1)Yax > 0, where as is the
imaginary part of a, that is, a = 7ax. It then follows from (1.11) that

(3.1 - wilt) _ 8
) l,LrQ Re i) (—1) b > 0.

Hence (2.13) is true for all sufficiently large ¢t. Hereby (2.15) holds, so
does (2.16).
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For the imaginary part of w: (t)/w«t) we need a precise estimate.
For the sake of simplicity we set

(3.2) F@z%%%%

Then by making use of the auxiliary function f(z), we deduce

a _ b—a—azf'(z)
P& = = 1r20'@)

Since f(z) is regular at the point at infinity, 2°f (z) is bounded there. It
therefore follows from (1.3) that '

) b—a
3.3 hmw _%xz a
(3.3) lim (=) b s
Lemma 2,

: wi() _ _ as
(3.4) 1}_1;1;} t Im wld) v

Proof. Since z(t) becomes infinite as ¢ grows to infinity, the above
(3.3) yields

b—a
nb

lim (P — %) (e =

Combining this with (1.7) we at once obtain

. _a) v b—a
lim ¢ [Fla) — 2] = (—1¢i 22
Taking real part we have
(3.5) lim ¢ Re(F(zit))) = (— 1 .
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On the other hand it is clear from (1.10) and (3.2) that

o ws wilt)
(3.6) F(zi(t)) = (—1) L)

The desired (3.4) follows at once from (3.5) and (3.6).
Lemma 3. There exist positive numbers R’ and 0 such that

142zP(z) - la|

ﬂR ’ == 2
1zI" Re T8 ) = o

for |z| = R and |arg z — s.| =< 0, where s, = (2k—1) n /2n.
Proof. With the help of (3.3) it is possible to take a positive number
R’ such that

|a|
Anb’

o5 - 158

|z]"

for all values of z with |z| = R’. Taking real part we thus have

la|
And’

(3.7) Ilzl”Re(F(z)) — Re [b—b:’ exp<—inz*)) <

n

for |zj= R’, where z* = arg z. Note that exp(—insy) = (—1)% and
la| = (—1)*as. Then it follows that

b—a
nb’

la|

nb

Re |

exp(——insk)) =

Hence we can find a positive number 8 such that

b—a
nb’

3la
dnd’

(3.8) Re ( exp(—inx)) =

for real values of x with |z—s.| = 0. It therefore follows from (3.7) and
(3.8) that
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la]
n F 2
|z|" Re(F(2)) = ot

in the range |z|= R" and |arg z — s,/ = 0. Lemma 3 is now proved.

Since the imaginary part as is different from zero, the real positive
quantities u and [ defined with (2.1) and (2.2), respectively, still have
their meanings in this case 2. Let R* be a positive number such that
only (2.3) holds for all values of z with |[z| = R*. Then we can easily
see that Lemma 1 with R* instead of Rx remains valid in the case 2.

LLet ;7 be an arbitrary positive integer such that |z(t;}| > [R*,
| zi(t;)| >IR" and

0 |zit)|" = 20" log I,
(3.9)
larg zit;)) — sl = 6 /2.

It is clear from (1.4) and (1.5) that all sufficiently large integers surely
satisfy the above conditions. Let uft) be the function of Lemma 1, and
let vi(t) be the function defined by (2.8). Since u;(0) = zi(t;), the double
inequality (2.7) is rewritten as

u,(t)
Zk(tj)

|
(3.10) 7

IA

IA

for 0 =t =< u. In particular |u;(¢)| = R* and |u,(t)| = R’ there. We next
differentiate (2.6). Then we have

wj(t) 1

(R+1) w(t)  1+u0)Q (uft)

for 0 =t = u. It therefore follows from (2.3) that

u; () '< 3
ut) | = 2nb’

(R+t)|ufe)|”

so that by means of (3.9) and (3.10),
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w;(t)

R¥D |1 »— anIz,.(t)I

for real values of ¢ with 0 = ¢t = u. Hereby

:3

EXCHIN

larg u;() — arg u{0)| = log [

for 0 < ¢t =< u. Combining this' with (3.9) we at once deduce
larg u(t) — sx] = 0

there. Consequently by virtue of (2.9) and Lemma 3, the real part of
v} ({t)/vt) is always positive in the interval 0 =t = u. In particular,
|v(t)| increases steadily, so that |v;(¢)| = |wi(t;)| by (2.19). On the other
'hand it is clear from (1.3) that

1+2P'(2)

Ve T R AR

Dm0

converges to |a|/b as z tends to infinity. Hence we may assume from
(1.4), (2.9) and (3.10) that the inequality (2.21) still holds for 0 =t < u.
Hereby (—1)argwv,(t) is a monotonic increasing function of ¢t and
satisfies

(—1)Y(arg viu) — arg v,(0)) > 2=

by means of (2.1) and (2.21). We now recall Lemma 2. Since (—1)*
asx =|a|, (—1)Im(w;: (t)/wit)) is negative for all sufficiently large ¢.
Hence the function (—1)targ wu(t) is finally decreasing.

Henceforth by exactly the same argument as in the previous
subsection 2.1, we finally conclude that the function A(z) is regular at
the point at infinity. We thus arrive at a contradiction again.
Accordingly the case 2 does not occur either.

4. The logarithmic derivatives. In the previous section we
introduced the function F(z) to estimate the logarithmic derivatives

wj (t)/wit). In fact the function F(z) defined with (3.2) satisfies (3.6).
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Hence taking real and imaginary parts we have

vy, W)
(4.1) Re(F(z4(t))) = (—1)Y*'Im wit)

o ivp. Wi®)
(4.2) Im(F(z;(t))) = (—1YRe __w,-(t)

for 7=1, 2, ..,2n. Let f(z) be the auxiliary function defined by (1.12).
Then we have already shown

a b—a—azf'(z)
(4.3) F(z) — b H1+20 ()

Assume for a moment that the function f(z) has a pole of order g at
the point at infinity. Then

(4.4) f(z) = (c+o(1))z*

near the point at infinity, where ¢ denotes a nonzero constant. Here we
remark that 1 =< g < n, as already mentioned. Since

zf(2) = (gc+o(l))z*

near the point at infinity, the above (4.3) yields

Flz) — & = (—gac+o(1))z’

b (mb'+o(1)2

there. It hereby follows that

45 l @ — ) o= 8¢
(45) im (Fz) — %) 2 2

On the other hand with the aid of (1.4) and (1.5), we deduce

. z(t) :
(4.6) lim T = expis)
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for j=1, 2, ..., 2n, where s; = (27—1) = /2n. Combining this with (4.5) we
thus have

wn  lim (P — 3 a1 = (-1 405 explias)

n
for =1, 2, ..., 2n.
For the case where the auxiliary function f(z) is regular at the point

at infinity, we have deduced (3.3) from (4.3). Therefore taking (4.6) into
account we obtain

(4.8) lim |F(z2)) — | [2/40)|" = (—1y4
nb

for =1, 2, ..., 2n.

The next three lemmas are immediate consequences of the estimate
(1.11) and these (4.7) and (4.8). The first is a preliminary for the case
3.

Lemma 4. Suppose that the constant a is purely imaginary and the
function f(z) has the form (4.4). Then the logarithmic derivatives
wj (t)/wit) satisfy

wilt) _ _qy8x
(4.9) l!Lrg Re WD) = (—1) AL
. HY *
(4.10) £LT|zj(t)l"”qu%UUj((T)) qj‘zb cos(gs; + cx)

for 7=1,2, ..., 2n, where ax is the imaginary part of a, c* =|c| and
Cy = arg c.

Proof. Since a = iax, the former (4.9) is an immediate consequence
of (1.11). The latter (4.10) follows from (4.1) and (4.7).

Lemma 5. Suppose that the constant a is real and the func—
tion f(z) ts regular at the point at infinity. Then

w; (1) _ b—a
w;(t) nbz ’

(4.11) lim | z(2)|" Re
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a

(4.12) lim Im 28— (qyn "

tooo wi{t) B

for 7=1,2, .., 2n.

Proof. The first (4.11) follows from (4.2) and (4.8). The second (4.12)
follows directly from (1.11).

Lemma 6. [f the constant a ts real and the function f(z) has the
form (4.4), then

(4.13) lim | 2/2)| " Re%_—% = — q:bi* cos(gs;+cx)

and the above (4.12) holds for j=1,2, .., 2n, where c* =|c| and
cx = arg c.

Proof. The estimate (4.13) follows from (4.2) and (4.7).

Finally we want to remark some elementary facts on the values
cos(gs;+cx). Assume that n = 2 and that cos(gs;+cx) =0 for all odd
integers j from 1 to 2n. Then by the definition of s; and by the fact
1=<g<mn we can easily see that 2¢g =n and sin{cs— 7/4) = 0.
Similarly if cos(gs;+c4) = 0 for all even integers j between land 2n,
then 2g = n and cos(cx—n/4) = 0. Furthermore it is clear by an
elementary calculation that

§<exp<i2qn:/n>>f =0

because of O < g/n < 1. Hence by the definition of s; again, we have

(4.14) ZoddCOS(qu+C*) =0,

(4.15) > wencos(gsi+cx) = 0,

where the first sum is taken over all odd integers 7 from 1 to 2n, and
the second sum is over all even integers 7 between 1 and 2x.

5. The maximum modulus principle. In order to complete the proof
of our theorem we need the following fact which is a slightly extension
of a classic theorem on the removable singularity.

Lemma 7. Let u(t) and v(t) be continuous functions of t for t = t*
satisfying the following conditions:
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a) the modulus |u(t)| and |v(t)| are both strictly increasing and
unbounded; : .
b) the argument of u(t) increases steadily and becomes positively
infinite while the argument of v(t) decreases steadily and becomes
negatively infinite.

Let G(z) be a regular function in the annulus 1 <|z| << + oo. [f the
compostte functions G(u(t)) and G(v(t)) are both bounded for t = t¥*,
then G(z) 1s regular at the point at infinity.

Proof. By the condition a), we can consider the inverse functions of
|lu(t)] and |v(t)] on the interval x = zx*, where x* is a sufficiently
large number. As before we denote these inverses by p(x) and g(x)
respectively. Then it 1s clear that

(5.1) lu(plx) | = z, |v(g(z)|= =
for x = x*. We next set

[(z) = arg u(p(x)),
(5.2)
J(x) = arg v(g(x))

for x = z*, where the branches of the argument are arbitrary. Then by
the condition b), /(x) increases steadily while J(x) decreases steadily
there. Hence the difference I(x) — J{(x) is strictly increasing indefinitely.
Of course this difference is continuous. Therefore for all sufficiently
large integers j, we can determine x,; uniquely so that

(5.3) _ (x;) — J(x;) = 2xj.
On the other hand it follows from (5.1) and (5.2) that
u(p(x)) = z exp(il(z)),
(5.4)
v(q(x)) = = exp(i/(x))
for £ = x*. In particular by means of (5.3),

(5.5) u(p(x;) = viglx).
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We now set the arcs

L = {u@®): plz) =t < plxi)}
(5.6)

= {v(t) 1 g(z)) =t = q(x;.1)} -

With the aid of (5.4) the arcs L} and L; are simple and lie in the
annulus z;, =|z|= x;;1. The arc L} winds around the origin in the
positive direction while the arc L; does in the negative direction.
Furthermore by virtue of (5.5), the arcs L} and L; have the same
initial point and the same end point. Consequently because of

Iz — 1) + J(z) — Jam) = 27,

the curves L; =L} — L; are all simple closed and wind around the
origin exactly once. Since each curve L; lies entirely in the ring z;, =
|z| = ;71 and the sequence {z;} converges to infinity with j, the
sequence of the curves L; converges to the point at infinity as j grows
to infinity. On the other hand by assumption and the definition (5.6),
the regular function G(z) must be bounded uniformly on all the curves
L;. It therefore follows by the maximum modulus principle that the
function G(z) is bounded in a neighborhood of the point at infinity.
Hence G(z) is regular there. This completes the proof.

Considering the functions 1/u(t), 1/v(t) and G(1/z), we can restate
the above Lemma 7 as follows.

Lemma 8. Let u(t) and v(t) be continuous functions of t for t = t*
satisfying the following conditions: \
a) the modulus |u(t)| and |v(t)| both decrease steadily and converge
to zero as t goes to infinity; ’
b) the argument of u(t) increases steadily and becomes positively
infinite while the argument of v(t) decreases steadily and becomes
negatively infinite.

Let G(z) be a regular function in the punctured umt disc 0 <
|z| < 1. Assume that the functions Gu(t)) and G(t)) are both
bounded for t = t*. Then G(z) is regular at the origin. |

6. Case 3. Suppose that the case 3 occurs. Then the auxiliary
function f(z) has a pole at the point at infinity. Let g be its order of
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the pole. Then 1 = g < n. We may assume that the function f(z) has
the form (4.4). We can thus make use of Lemma 4. By what was
mentioned at the end of the section 4, especially (4.14) and (4.15), it is
possible to find two both odd or both even integers A and & between 1
and 2n satisfying

cos(gsi+cx) <0, cos(gse+cx) > 0.

There are two cases to consider. We first assume that (—1)*ax is
positive. Then with the help of (4.9), the modulus |wit)| and |w.t)]
are both strictly increasing for ¢t = ¢*, where t* is a sufficiently large
number. Of course they become positively infinite when ¢ goes to
infinity. More precisely we easily have

lim 1 log | w,(t)| = (—1) 2% > 0
for j=h and j=k. Hence it follows from (1.7) that

(6.1) limw =0,

im0 W,(t)
so that by means of (1.9),

(6.2) limm =0

t>oo w;‘(t)

for y7=h and j=#k. This means that the function A(z)/z is bounded on
the curves wy(t) and wy(t). Furthermore it follows from (1.7) and (4.10)
that

) . wi(t)

(6.3) %I_’I’Ll t* Im olt) I, >0,
. s wi(t)

(6.4) lg}.} * Im o) I, <0

with s = 1—¢q/n. Since 0 <s <1, the argument of wx(t) increases
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steadily and becomes positively infinite, while the argument of w.t)
decreases strictly without bound. Consequently by virtue of Lemma 4,
the singularity of the function A(z)/z at the point at infinity is
removable. Further with the aid of (6.2) this function A(z)/z takes the
value zero at the point at infinity. Hereby the function A(z) itself is
regular there. However this is a contradiction by (1.9), because a is
different from b.

We next suppose that (—1)*ax is negative. This time with the help
of (4.9) again, the modulus [wa(t)| and |w(t)| both decrease steadily
and converge to zero as t increases from a certain point t* to infinity.
Hence by making use of I'Hospital’s rule, we deduce

lim - log [w,(8)| = (=1) %% < 0

for j=h and j=k. It thus follows from (1.7) that
(6.5) lim (zAt))'wit) = 0,

SO Vthat by means of (1.9) again,
(6.6) lim w/)A(w#)) = 0

for y7=h and j=k. For the imaginary parts the estimates (6.3) and {6.4)
remain valid. We now apply Lemma 8 with u(t) = wi(t), v(t) = wit)
and G(z) = zA(z). Consequently the function zA(z) must be regular at
the origin. As before by means of (6.6), this function zA(z) takes the
value zero at the origin, and hence the function A(z) itself is regular
there. However this contradicts (1.9) again. Accordingly we reject this
case 3.

7. Case 4. In this section we treat the case 4 where the constant a
is real and the auxiliary function f(z) is regular at the point at infinity.
Let us recall Lemma 5. Then by virtue of (1.7), the estimate (4.11)
becomes

(7.1) ltlﬁrg t Re WD) "
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for j=1, 2, ..., 2n. It therefore follows that

. loglwt)] _ b—a
(7.2) ‘ lim logt = nb

for each j, provided that a is different from b. Let h and k be arbitrary
integers satisfying 1 = h<2n 1 =k = 2n (—1)a <0 and (—1)a > 0.
Then by virtue of (4.12), the functions w(t) and w.t) satisfy the
condition b) of Lemmas 7 and 8. ‘

Suppose first that a < b. Then from (7.1) and (7.2), each function
|wi(t)| increases steadily and with some positive integer m,

t __
(wit)

73) i

Combining this (7.3) with (1.7) and (1.9) we at once have

Awit) _
= ()

for j=1, 2, ..., 2n. In particular the function A(z)/z™ is bounded on the
curves wi(t). Taking these facts into account we can apply Lemma 7
with w(t) = wi(), v(t) = wyt) and G(z) = A(z)/z". Then the function
A(z) i1s regular or has a pole at the point at infinity. Since A(z) is not
constant by assumption, with a suitable integer s and a nonzero
constant C,

(7.4) lim

Consequently it follows from (1.7), (1.9) and (7.4) that

(_u_’itgi)s = (—1Y1i b—a

lim 5

t— o0

for j=1, 2, ..., 2n. Clearly the integer s must be positive, and hence each
argument of wit) must converge to some finite value. This is absurd

by (4.12).
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Suppose next that a > &. Then by means of (7.1) and (7.2) again, all
the modulus |wit)| decrease and converge to zero as t goes to
infinity. Further with some positive integer m,

(7.5) lim t(w,@)" =0

t— oo

for j=1, 2, ..., 2n. Hence it follows from (1.7), (1.9) and (7.5) that
lim (w,(2))" Al 2)) = 0

for j=1,2,..,2n. This time we apply Lemma 8 with u(t) = wit),
v(t) = wi(t) and G(z) = z"A(z). Consequently the function A(z) is
regular or has a pole at the origin. Hence by the same reason as
before, we can take some positive integer s such that

lim t(w,(t)y = C"

with a nonzero constant C’. Therefore every argument of w;(t) must
converge to some finite value when ¢ goes to infinity. This contradicts
(4.12) again.

Accordingly the constant a must be equal to the constant b, and the
auxiliary function f(z) becomes Q(z) — P(z). It therefore follows by
assumption that the difference P(z) — Q(z) is regular at the point at
infinity. Consequently with the help of Lemma 4[1], the functions P(z)
and Q(z) differ by a constant. This is precisely what we wanted to
prove.

8. Case 5. We finally consider the case 5. As before we may assume
that the auxiliary function f(z) has the form (4.4). For this case 5 we
can make use of Lemma 6. Firstly let us note the relation

cos 2x = —2sin(x —n /4)cos(x — =w/4).
Then by what was mentioned at the end of the section 4, except for

the case where 2qg = n and cos 2¢cx« = 0, we can find two integers h
and k& between 1 and 2n such that

(8.1) (—1)a <0, cos(gsitcx) <0,

268



On Certain Functional Equations, II

(8.2) (—1Ya >0, coslgsitcsx) <0.

Let A be an integer between 1 and 2z satisfying (8.1). Then taking
account of (1.7) and (8.1) we rewrite (4.13) and (4.12) as

w; (¢)

(8.3) 1133 t* Re o) =R,>0,
) wi(t)
(8.4) EIIB Im wilt) [»>0

respectively, where s = 1—¢q/n. Note that 0 < s < 1. Then the modulus
lwi(t)| increases strictly and becomes infinite, and furthermore we
obtain

lim £ 'log|wi(t)| = 1]_{_" .
Hence by means of (1.7) and (1.9),

fim AWsle) _ o

(8.5) lim =,

Similarly if an integer k satisfies (8.2), then

(8.6) lim ¢ Re 228 _ p < o
t— oo w*(t)
8.7) lim Im 248 — 1 <o,
t—co Iz(t)
. Alwt))
(8.8) hm=—" " =0

Consequently with the aid of these (8.3)-(8.8), the functions w(t), wt)
and A(z)/z satisfy the conditions of Lemma 7. It thus follows from
Lemma 7 that the function A(z)/z is regular at the point at infinity,
and hence the function A(z) is also regular there from (8.5) and (8.8). In

269



particular A(wx(t)) converges to some finite value as ¢ tends to infinity.
It therefore follows from (1.9) again that the constant a coincides with
the constant b. Accordingly f(z) = Q(z) — P(z) by the definition (1.12),
so that the difference P(z) — Q(z) has a pole of order g at the point at

infinity. Here we recall the functional equation (1.2) and the definition
(1.8). Then we have

P(zi(t)) — Qzu(8)) = A(wi(?)) — B(@x(z:(2))).

Evidently by virtue of (1.4), the left hand side becomes infinite as ¢
goes to infinity. On the other hand by the convergence of A(w.(t)) and
by the property (1.6), the right hand side must be bounded for ¢t = 0.
This is a contradiction. Consequently the case 5 is absurd except for
the subcase where 2¢g = n and cos 2¢x = 0.

Hereafter we confine ourselves to this exceptional case. Let F(z) be
the function defined with (3.2). Since the constants a and b are real,
we easily have

11+2Q"(2)|* Im(F(z))
(8.9)

= Im(zP"(z) — zQ"(2)) + Im(zP’(2)zf"(z)).

In order to estimate the imaginary part of F(z) we need to estimate the
second term of the right hand side. To do this we set the functions

(8.10) g(z) = ab(f(z))* — ac*f(z) — bc*P(z),
(8.11) R(z) = 2bf(z) — ¢*.
Differentiating (8.10) we deduce
g’ (z) + bc?P'(z) = af (z)R(z).

Hence it follows that

a|R(z)|?* zP’'(z)zf (2)

= 28" (2)zP"(z)R(z) — bc*|zP’(2)|*R(z)
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because c? is purely imaginary. Hereby
alR(2) 1’ Im(zP’(z)zf'(2))
(8.12)
= Im(zg’(2)zP’(2)R(z)) — 2b%" |zP’(z)|*Re(f(z)),

where ¢’ denotes the imaginary part of ¢? that is, ¢ = ic’. Further-
more it is clear from the definitions (1.12) and (8.10) that

(8.13) g(z) = ab(f(z))* — ac’Q(z).
Since ab is real and ¢! is purely imaginary, it follows that
(8.14) Im(g(z)) = 2abRe(f(z)Im(f(z)) — ac’Re(Q(z)).

Lemma 9. /f the function g(z) is regular at the point at infinity,
then

w; (t) _ b—a
wi(t) nb

(8.15) ltl_I"E |z{(¢)|" Re

for each j satisfying cos(qs;+cx) = 0. Furthermore if a = b, then

. | z;|nte wi(t) L ac* .
(8.16) !Lrg Tog |2, Re D) =(—1) e sin(gs;+cx)

for each j with cos(qs;+cx) = 0.
Proof. Since g(z) is regular at the point at infinity, z°g(z) is bounded
there. With the help of (4.4) and (8.11), the function R(z) takes the form
(8.17) R(z) = (2bc+o0(1))z¢
near the point at infinity. Hence by means of (1.3),

(8.18) zg (2)zP’ (z)R(z) = O(z"**7")

there. Furthermore with the help of (1.4) and (1.6),
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Re@e®) _ _
im = lzw) !

for j=1, 2, ..., 2n. It thus follows from (8.14) that

. Re(fz)Im(f(z)) _ ¢
(8.19) lim log|z(t)| 2

for j=1, 2, ..., 2n. On the other hand it is clear from (1.4), (1.5) and (4.4)
that

lim Im(f(z,)

8.20
&2 = [z

= c*sin(gs;+cx)

for 7=1, 2, ..., 2n. Hence if an integer j between 1 and 2n satisfies
(8.21) cos(gs;+cx) = 0,

then the above (8.19) and (8.20) yield

lim —-l—zﬂ"q— Re(f(z;)) = — L cos{gs;—cx)
~= log|z,| ! 2b A

because ¢’ = (c*)® sin 2c4x and cos(gs;—cx) = sin 2csin(gs;+cs). Conse-

quently we obtain

. |zP () "Re(f(z)) _  maic*
®22) e Toglzl - 2

cos(gs;—cx)

for each j satisfying (8.21). Here note that 2¢ = n, and 2n—q = n-tgq.
Then by means of (8.12), (8.17), (8.18) and (8.22), we deduce

(8.23) i IMEP (2)2,(2)) _ reack

i = T ogla| b sin(gs;+cx),

and hence by virtue of (1.3) and (8.23),
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b—a
nb’

(8.24) lim |z/(2)|" Im(F(z)) = (—1)

for each number j satisfying (8.21). Accordingly the estimate (8.15)
follows at once from (4.2) and this (8.24).

Assume now that a = b. Then f(z) = Q(z) — P(z) by the definition
(1.12). Hence near the point at infinity

2Q'(z) — zP'(z) = zf'(z) = O(z9).
It therefore follows from (8.9) and (8.23) that

i 1 12Q @) Tm(F&) _ ract
== |zl loglz] 46

sin{sg;+cx)

for each j with (8.21). Combining this estimate with (1.3) and (4.2) we
can obtain (8.16) immediately. This completes the proof.

Assume that the function g(z) is regular at the point at infinity and
that @ > b. Let h be an integer between 1 and 2Z2n which satisfies
cos(q‘s;1 + ¢x) = 0. Then by means of (1.7), (4.12) and (8.15), we obtain

wi(t) b—a

(8.25) ln_g)l t Re wlt) b <0,
. wi®) _ w1 @
(8.26) ltLrE Im wit) (—1) 5 -

Hence the modulus |w(t)| decreases steadily and converges to zero as
t tends to infinity. Furthermore since

lim log | wit)| _ b—a
tve0  lOg t nb

it follows from (1.7) and (1.9) that
(8.27) lij}? (wn())"Alwi(t)) = 0

with some positive integer m. On the other hand it is possible to find
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an integer £ between 1 and 2n such that cos(gsi+cx) > 0. Here we
remark that this integer & is odd or even according to whether the
integer 2 is even or odd. With the help of (1.7), (4.12) and (4.13), we
deduce '

) \ wi(t)
(8.28) lgg t’ Re wilt) R, <0,
. wi(t) _ 1w @
(8.29) 152 Im 0 =(—1) L

where s =1—q/n = 1/2. Hence by making use of (1.7), (1.9) and
(8.28), we also have

(8.30) C lim w®AG@) = 0.

Consequently the functions wi(t), wit) and z"A(z) surely satisfy the
conditions of Lemma 8. It therefore follows from Lemma 8 that the
function z”A(z) is regular at the origin, so that the function A(z) itself
is regular there by virtue of (8.30). In particular A(w.t)) converges to
the finite value A(0) when t tends to infinity. This implies a = b by
(1.9). This is a contradiction. |

Suppose next that the function g(z) is regular at the point at infinity
and that a < b. As before let 2 be an integer between 1 and 27 such
that cos(gsi+cx) = 0. Then with the help of (1.7), (4.12) and (8.15)
again, we obtain

) wi(t)  b—a
(8.31) 11_{0{1 t Re wit) b >0

and (8.26). This time the modulus |w(t)| increases steadily without
bound and with some positive integer m,

Awi®) _

8.32 m
(852 e (wit))

by means of (1.7) and (1.9) again. Let £ be an integer between 1 and
2n such that cos(gsi+csx) < 0. By what was mentioned at the end of
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2

the section 4, such an integer k surely exists and it must be odd or
even according to whether the integer & is even or odd. With the aid
of (1.7), (4.12) and (4.13) we also have

) . wi (t)
(8.33) l,lfg t’ Re o)

:Rk>0

and (8.29), where s =1/2. It therefore follows from (1.7), (1.9) and
(8.33) that _

Alwi(t) _

(8.34) lim =0.

Lo wk(t)

This time we can apply Lemma 7. Then the function A(z) is regular at
the point at infinity by means of (8.34). Consequently a = & by virtue
of (1.9) again. This is a contradiction.

Finally suppose that g(z) is regular at the pomnt at infinity and that
a = b. Let j be an integer between 1 and 2n which satisfies cos(gs;+
cx) = 0. Then by means of (1.7), the estimate (8.16) becomes

: 2L wi (@)
lﬂl log t Re wit)

R;,

where R; Is a nonzero constant. It therefore follows that log|w,(t)|
converges to some finite value as * goes to infinity. This means that
the function A(w,(t)) must be bounded for ¢ = 0. Consequently by the
functional equation (1.2) and by the property (1.6), the function P(z{(t))
— Q(z{t)) is also bounded for ¢t = 0. On the other hand by the
assumption a = b, the auxiliary function f(z) coincides with Q(z)
— P(z). Hence the difference P(z) — Q(z) has a pole of order g at the
point at infinity. In particular by means of (1.4), P(z{t)) — Q(z;))
becomes infinite as ¢ goes to infinity. This is a contradiction.
Accordingly the auxiliary function g(z) defined by (8.10) is not regular
at the point at infinity.

We next consider the case where the function g(z) has a pole at the
point at infinity. Let r stand for its order of the pole. Then 1 =7» < n,
and the function g(z) takes the form
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(8.35) g(z) = (d+o0(1))z",

where d i1s a nonzero constant. With the help of (1.3), (8.17) and this
(8.35), we can easily have

i Im(z,g (z,-)z,fifi,—)R(z,-))
e |z,(t)]
(8.36)
= (— 1Y 2nrabc*d*cos((qg—7r)s;+cx—dx)

for j=1, 2, ..., 2n, where d* =|d| and d«x = arg d. On the other hand by
means of (8.14) and (8.35) again,

lim Re(/f (Zf))lmgf(z,)) _ ar
o |z(t)| 2ab

sin(rs;+dx),

so that (8.20) implies

830 lim "I = A cosg—rstea—du

t—oo

l Z;

for each number ; satisfying (8.21). Consequently we obtain

i 15 (2) | Re(f(2,))

lz) 1"

(8.38)
a*

= ch* cos((g—7)s;+cx—dx)

for each ;j which satisfies (8.21). Here we remark that 2n—qg+7r = n+
g-+r and sin 2c4 = (—1)Y"" provided j satisfies (8.21). Indeed cos(gs;+
cx) = 0 implies

—1 = cos(2gs;+2cs) = cos(ns;+2cs) = (—1Ysin 2cy,
because 2qg = n, cos 2cx = 0 and sin ns; = (—1Y*'. Taking (8.12), (8.17),

(8.36) and (8.38) into account we thus obtain
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Im(sz1(zj)zif’(Zi))
| 248) 1"

(8.39)
(n—2r)nd*

= (=1r 4bc*

cos((g—r)s;+cx—dx)

for each number ; satisfying (8.21). We are now in a position to prove
the next final lemma.

‘Lemma 10. Suppose that the function g(z) has a pole at the point
at infinity and takes the form (8.35). [f the order r is greater than q,
then

. wtamr .. Wi (E)

{er.}lzj(t)l Rem

(8.40) ,

= 220 o (g—r)siFea—d)

dnbc

for each number j ‘satisfying cos(gsi+cx) = 0. If r =q, then the

estimate (8.15) remains valid for each j which satisfies cos(gqs;+

cx) = 0. Furthermore if r = q, then for every number j satisfying

cos(gs;+tcx) = 0, the real part of f(z{t)) converges to some finite value

when t goes to infinity.

Proof. Assume first that » > q. Then g+r > 29 = n. It thus follows

from (1.3), (8.9) and (8.39) that

ltLrg |z;(2) | " Im(F(z;))
(8.41)
(n—2r)d”

= (—1y RO cos((g—7)s;+cx—dx)

for every s that satisfies (8.21). On combining this (8.41) with (4.2) we
hence have the desired (8.40).

Next we suppose that » = g. Then ¢g+7» = n, and hence by means of
(8.39) again,
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e | z,(£)]

for each j satisfying (8.21). Consequently the relation (8.9) yields

i 1L F2Q (@)1
Im »
SNETO]

Im(F(z;)) = n(a—b)sin ns;,
so that by means of (1.3),

lim | 2,(8) | "Im(F(zy) = (— 1y~ 22
t-»00 nb

for each number ; satisfying (8.21). The desired (8.15) follows directly
from this estimate and (4.2).

The last statement is an immediate consequence of the above (8.37)
because of r—¢ = 0. This completes the proof of Lemma 10.

In order to treat the exceptional case completely we must consider
the case where the auxiliary function g(z) has a pole at the point at
infinity. Let » stand for the order of the pole.

Suppose first that »r > ¢q. Then 0 <r—¢ < n—q = q. Hence there
exists an integer A between 1 and 2z which satisfies

cos(gsitcx) =0, cos({(q—r)sitecx—ds) <0

simultaneously. It thus follows from (1.7) and (8.40) that

Iim ¢° Re wi ()

t—r00 w,,(t)

:Rh>0

with s = (n+q—r)/n. Note that 1/2 <s <1 by assumption. Hereby
with the aid of (1.7) and (1.9),

Alwi(t) _

lim = 0.

oo Wi(E)

Let k£ denote an integer between 1 and 2n such that cos(gs.+cx) < 0.
Then the function wi(t) satisfies (8.33) and (8.34). Hereby the functions
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wilt), wit) and A(z)/z satisfy the conditions of Lemma 7. Consequently
by exactly the same reason as before we arrive at a contradiction.

Suppose next that » = ¢q. Then by Lemma 10, the previous estimate
(8.15) still holds. Hence if a is different from b, by exactly the same
manner as in the case where g(z) is regular at the point at infinity, we
also arrive at a contradiction. Therefore it only remains to consider the
case where r =g and a = 5. If a = b, then f(z) = Q(z) — P(z) by the
definition (1.12). Hence it is clear from (1.1) that

Qx(z) = Px(z)exp(f(z)).
In particular by the property (1.6) and by the definition (1.8),
logjw,(t)| + Re(f(z,(2))) = log R

for real values of t with t =2 0. Here we recall Lemma 10. Then for
each number j satisfying cos(gs;+cx) = 0, loglwi{t)| converges to some
finite value as t tends to infinity. Consequently A(wy{t)) must be
bounded for t = 0. It therefore follows from the functional equation
(1.2) and the property (1.6) that f(z;(t)) is also bounded for ¢ = 0. This
is impossible since the auxiliary function f(z) has a pole of order g at
the point at infinity.

Accordingly the exceptional case never happens. Hence the case 5 is
impossible. The proof of our theorem is now complete.
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