On certain real entire functions

By Tadashi Kobayashi

Let f(2) be a nonconstant real entire function (i.e., f(z) takes only
real values on the real axis), and let E(f) be the set of real numbers ¢
for which all the roots of the equations f(2)==¢ are real only. Sup-
pose that the set E(f) contains more than two real numbers. Then
T(, f)=0(), where T(r, /) means the characteristic function of
f(2). Hence the function f(2) has at most order one and mean
type. Furthermore the set E(f) is a closed interval in the real field
and if this interval E(f) is unbounded, then f(z) reduces to a
polynomial of degree at most two (cf. Edrei [2]). o

The purpose of this paper is to show the following theorems on such
real entire functions.

Tueorem 1. Let f (2) be a nonconstant real entire function.  As-
sume that the set E(f) contains more than two points. Then the limit

| H T(?’, f)
(*) lim e

#—>00
exists finitely.
Turorex 2. Under the hypotheses of Theorem 1, assume further
that the limit (*) is positive. Then the set E(f") of the derivative f'(z)
also contains more than two points.

1. Preliminaries. Let f(2) be a nonconstant real entire function
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whose set E(f) contains more than two points. Let us set
g(2)=af(2)+b with real constants a(#0) and b. Then the function
g(2) is also real entire and T'(r,g)=T(r, f)+0(). Furthermore it is
clear by definition that if E(f)=[u,v], then the set E(g) coincides
with the closed interval [au-+b,av+b]. Hence we can assume without
loss of generality that the set E(f) is the closed interval between —1
and 1.

Let 2z* be a point of the upper half plane H such that f(z¥) is real
and greater than one. Since the function f(2) fails to take the values
1 and —1 in the upper half plane H, (f(2))?—1 never vanishes
there. Hence we can define the regular function A(2) in the upper
half plane H such that

(A@DX=(f(2))*-1

and that A (z*) is real positive.

Here for a moment we assume that Re(F(w)A(w))=0 for some
point w of the upper half plane H, Then (f(w)A(w))%<0, so that
(F@)((f (w))2—1)=<0. It thus follows that (f(w))2 must be real
and 0 (F)*< (f (w))2  This means that the value f(w) is real and
satisfies —1<f W) <1, This is clearly impossible by hypotheses.
Therefore Re(F(2) A(2)) is always positive or negative in the upper half
phane H, Moreover, since f(z*) and A(z*) are both real and positive,
it then follows that Re(f(2)A (2)) is positive at each point of the upper
half plane H,

By the relation (A(2))2=(f(2))2—-1, we have |A(|*+|f(@|*=1
in the upper half plane H, Hereby '

| f(D+A@|2=|f@|*+2Re(f(D AN+ ]|AR|*>1

at each point of H, In particular, | f(2)+A(2)|>>1 in the upper half
plane H, By this fact, we can further define the regular function

H(2)=ilog (f(2)+A(2))

in the upper half plane H, where the branch of the logarithm is chosen
so that H(z*) is pure imaginary. Evidently |
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On certain real entire functions
F(@)+A(2) =exp(—iH(2))
by definition. It thus yields that
exp(—2iH(2)) = (f())*+2f (2) A(®) + (A (2))*

=2(f(D)*+2f (DA -1
=27 (2) exp (—iH(@) —1.

Consequently we deduce that

2f(2)=exp (iH(2)) + exp (—iH(2)),

so that f(2) = cos H(z) in the upper half plane H. ,
Now by V(z), let us denote the imaginary part of the function
H(z). Then the function V(z) is harmonic and

V()=log|f(®)+A®)]|

in the upper half plane H. Furthermore since | f(2) +A(2)|>1 in H,
this function V(2) is always positive there. It thus follows from a well
known result of Caratheodory [1] that the quotient H(2)/z converges
to a finite value s uniformly as z tends to infinity from the inside of an
arbitrarily fixed angular region |argz—=/2| <t*<z/2. Here the limit s
is the quantity defined with | |

Vix+iy)

s= inf Im H(x+iy) =inf .
¥>0 Yy y>0 Yy

so that this limit s is a real and nonnegative value. ~Of course, we have
V(x+iy) =sy for values of x+iy with y>0.

2. Proof of Theorem1l. Let f(2) be a nonconstant real entire.
function whose set E(f) contains more than two points. Then by
what is mentioned before, we can suppose that the set E(f) coincides
with the closed interval between —1 and 1. S

Let H(2) be the regular function defined in the previous section.
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Then f(z2)=cosH(z) in the upper half plane H. Hence

2| f(@)| sexp(V(2)) +exp(—V ()

at each point of H, where V(2) stands for the imaginary part of the
function H(z). Since V(2) is always positive in H, we thus obtain

log | f(2)|slog*| (&) | = V()

there. Furthermore since

lim —},—H (ret)e it=s

r—>+o00
for real values of t with 0<¢<z, and this limit s is real, we can find

lim —,l,—V (rett) =ssint
r—>-+o

for O<t<n~, Hence it follows that

hm+suleog+ | f(rett) | <ssm t
y—>

for 0<¢t<z, On the other hand, since T(r, f)=0(r), we have
log M (r, f/)=0(r) for real positive values of #, where M(r, /) stands
for the maximum of | f(z)| on the circle |z] =#. Hence it is possible
to find a positive number M satisfying

log*| f(re®) | <My

for real values of 7 and ¢ with >0, Therefore for an arbitrary
unbounded increasing sequence {7.} of positive numbers it follows from
Lebesgue s convergence theorem that

lim sup——l— log+| f(raett) |dt

n—-)OO
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o 1 ‘
lim supr—log**l f(rnett) | dt
o P "
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Since f(2) = f(2), we thus have

s T (r‘n’ f) 2

1 <

lrle—-)sogp " - 5
so that we gef ﬁhally

. T(r, ) 2

lu;r_l) il:op - = z S

Again, let us recall the relation f(2)=cos H(2) and the inequality
V(z)=sy. Then it is clear that

exp(V@) =1+ ||,
sysV(2)<log2+log*|f(2)]

for values of z2=x+iywithy>0. Hence we easily obtain

T ) 2 .
CERRPS

-

lim inf
r—>-co

Consequently, T'(7, f)/r converges to the real and nonnegative value
2s/x as r tends to infinity. This completes the proof.

3. Preliminary Lemmas. Before proceeding with the .proof of
Theorem 2, we need two preliminary lemmas.

Let f(2) be a nonconstant real entire function whose set E(f)
coincides with the closed interval [—1, 1], and let H(2) be the auxiliary
function corresponding to this function f(2) as in the section 1. The
quotient H(2)/z converges to the real value s as z tends to infinity

161



from fhe inside of the upper half plane H,
Leuna 1. With the above notation
SO+ =
for all real points x.

Proor. Let A(2) be the regular function defined in the sec-
tion1. Then by (A(2))*=(f(2))2—1, it is clear that the function
A(z) has continuous boundary values on the real axis and that A(x) is
pure imaginary for a real point x at which |f(x)|<{1. Hence by the
definition of H(z), the function H (z) has also continuous boundary
values on the real axis and it takes real values for real points x with
| f(x)]|<1, It therefore follows from the principle of reflection that
H(z) is regular at each real point x such that |f(x)]<<1. Hereby
H' (x) exists and is real, so that

H'(x) = lim Im H(x+iy) —-ImH(x) —lim Im H(x+1y)
y=>+0 y y—=>+0 y

at such a real point x. On the other hand, the imaginary part of the
function H(z), which we denote with V' (2), satisfies the inequality
V (x+1iy)=sy for real values of x and y with y>0. Hence we find
H’(x)=s at each real point x provided that |f(x)|<<1. Here let us
recall the relation f(2)=cos H(z). Then f'(2) = —H’(2) sin H(2).
Consequently we have that

S22+ (f"(x))2=s% cos?H (x) + s? sin?H (x) =s?

at every real point x with |f(x)|<1. -
For a real point x at which |f(x)|=1, our des1red inequality is
trivial. Hereby Lemma 1 is proved. \

Lexua 2. Suppose with the above notation that the limit value s is
positive. Then the derivative f'(2) has infinitely many positive real
zeros and negative real zeros.  Furthermore if f"(x¥)=0 at some real
point x*, then | f'(x*) | is not less than s. -
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Proor. Since T (r, f)/r tends to the real value 2s/x as r becomes
positively infinite by Theorem 1, and since the value s is not zero by
assumption, the order of f(2) is exactly one.

Assume now that the derivative f“(2) has a finite number of positive
zeros. Then the function f(x) is strictly increasing or decreasing for
sufficiently large real x. Hence we can find a real number ¢ so that
f (x) does not take the values 1 and —1 for x=c¢. Here let us consider
the function F(2) defined with f(c—=2%*. Then it is clear that F'(2) is
also real entire and all the roots of the two equations F(z)=1 and
F(z)=—1 are distributed on the real axis only. So it yields that
T, F)=0(). On the other hand it follows from definition that
T f)=0(T (r,F)). Therefore we have T (7, f)=0(%), This is
a contradiction. Hence the function f’(2) has infinitely many positive
zeros. Similarly, f’(2) has infinitely many negative zeros.

Let x* be a real point at which f”(x*)=0, Assume for a moment
that f’ (x*) is also zero. Since the order of f(2) is one, we have

d (f'()" —1
dz (f(Z) )2; (z—ay)?

for values of 2z with 2#a; where a; stand for the zeros of
f(z). Hence if f(x*)#0, then (f'(2)/f(2))" is surely negative at the
point x* . However this is clearly absurd. Hereby f(x*) must be
zero. This is absurd again. It thus follows that f"(z) does not vanish
at this real point x*. 7

Let «a and b be successive real zeros of Jf’(2) such that
a<x*<b, Since the set E(f) is the closed interval between —1 and 1,
the values f(a) and f(b) satisfy |f(a)|=1 and | f(®)|=1. Now we
can claim that f(x) has a zero point in the interval (&,8). For
otherwise f* (x)/f(x) decreases strictly for a<x=b, but it vanishes at
both points a and &. It therefore follows from Lemma 1 that the
maximum value of | //(x)| on this interval (a, 5) must be greater than the
limit value s, On the other hand, since the order of f’(2) is at most
one and all the zeros of f'(2) are real only, f”(x)/f’(x) also strictly
decreases in the open interval (a,b). In particular Sf”(x)/f" (%)
vanishes at most once in this interval. Therefore for a=x=<b, | f/(x)]
assumes its maximum value at the point x*,  Accordingly we find that
| F/(x*¥)| =s, which is to be proved. This completes the proof.

163



4. Proof of Theorem 2. 1Iet f(2) be a nonconstant real entire
function satisfying the hypotheses of Theorem 2. As before we can
assume that the set E(f) is equal to the closed interval between —1 and
1. Hence we can make use of the notations and the results which we
state in the previous sections.

Hereafter we want to claim that the derivative f“(2) never takes the
real value s in the upper half plane H, where ‘s is the quantity in
Lemmas 1 and 2. Of course, s is positive by assumption. ,

On the contrary we suppose that there exists a point 2* in the upper
half plane H at which f'(z¥)=s. Since f”(2) takes no zeros in H,
f7(2*) is not equal to zero. Hence we can consider the regular
element of the inverse function of f’(2) with center s and mapping the
point s to the point z*¥. Now let us continue analytically this regular
element along the real axis from the point s toward the origin. Then
by this continuation, we can define the curve C: z=2z(0) (0 t<t*)
satisfying z2(0)=z* and f'(z(®)=s—¢ for 0<t<t*  Here let us notice
that the initial point z* is a point of the upper half plane H and that
the function f7(z) takes real values only on this curve C and the real
axis. Hence if the curve C intersects the real axis at some point v,
then f”() must be zero. So|f'(v)|=s by virtue of Lemma 2. Fur-
thermore let us notice that all the zeros of f’(z) are real only. Then
we can at once conclude that this continuation never continues to the
origin. Therefore the continuation defines a transcendental singularity
at some real point # with 0<#<(s, Consequently we may assume that
the curve C:z=2z() (0=¢<t*) is an asymptotic curve which starts from
the point 2* and satisfies f'(z(¥))=s—¢ for 0=¢<*, where
t*=s—u. Of course, the curve C never intersects the real axis, so
that it is contained entirely in the upper half plane H, Since f'(?) is
of order one and has real zeros only, the imaginary part of the
logarithmic derivative f” (2)/f'(2) is always negative in the upper haif
plane H. Hence the imaginary part of f”(z2(#)) is surely negative for
0<t<t*, because jf’(z(#)) is real and positive there. On the other
hand by construction, the curve C is an analytic one. Therefore
)z’ (@) =—1 for 0<t<t*. Hereby it follows that the imaginary .
part of z’(?) is always negative, so that of z(#) is strictly decreasing for
" 0<t<t*. This means that the asymptotic curve C lies entirely in the
strip 0<Im z<Im z*,  Since C approaches the point at infinity, the
real part of z(#) therefore becomes positively infinite or negatively
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infinite as the real parameter ¢ tends to #*. We may assume for
definiteness that the former case occurs. Then it is possible to take a
real number 7 such that the line Re z=7 never crosses the curve
C. Let C* be the curve which is symmetric to the curve C with
respect to the real axis. Then by assumption, the curves C and C* are
both contained entirely in the half strip Re z=7, [Imz|<Im=z* By
D, let us denote the unbounded subregion of this half strip bounded by
the lines Re z=7, Im z=+Im 2* and the curves C and C*, Of course,
by construction, the region D is simply connected and is symmetric
with respect to the real axis. Furthermore D contains all sufficiently
large real points. Now the function f“(2) takes real values on the curve
C and it converges to the real value # as z tends to infinity along
C. Hereby since f’(z) is also real entire, f’(2) also converges to the
value # as z tends to infinity along the curve C*. In particular, f/(2)
is bounded on the boundary of D. Here let us remark that f7(2)
satisfies log | f"(2)|=0(|z|). It then follows from the maximum
principle that the function f’(2) is also bounded in the region D, so
that f"(2) approaches the real value # as z tends to infinity from the
inside of D. Especially f’(2) tends to the value # as z does to infinity
along the positive real axis. However this is clearly impossible by
Lemma 2. Consequently the function f'(z) never assumes the value s
in the upper half plane H, Since f’(2) is real for real z, the equation
f/(@=s has only real roots. Using the exactly same argument as
above, we can also show that all the roots of the equation f’(2)=-—s
are distributed on the real axis only. It therefore follows that the set
E(f") of the function f“(2) contains the closed interval between —s and
s. This completes the proof. '
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