Distribution of values of entire functions

of finite lower order

By Tadashi Kobayashi

It is well known that a simple geometrical restriction on the
distribution of the values of an entire function is almost enough to
bound the growth of the function. For instance, the following facts
were proved ([2], [5], [6]).

A. Let f(2) be an entire function having only real zeros and real
ones. Then f(z) has at most order one and mean type,

B. Ler f(z) be an entire function of finite lower order. If all its
zeros and all its ones lie in the strip |Im z| <1, then f(z) has at most
order one and mean type.

C. Let f(2) be an entire function. Assume that there exists an
unbounded sequence {wx} of complex numbers such that all the roots of
the equations f(2) =w, are real. Then the function f (z2) reduces to a
polynomial of degree at most two. :

D. Let f(2) be an entire function and let T (r,f) be its
characteristic function. Assume that there exists an unbounded se-
quence {wx} of complex numbers such that all the solutions of the
equations f(2) =wn lie in some closed half plane.  Assume further that

lim inf_7.‘<_”r’f_>_ —0.

y—>00

Then the function f(2) is a polynomial of degree not greater than two.

217



The purpose of this article is to investigate the possibility of proving
analogous results in this direction. In what follows we assume
acquaintance with the standard terminology and the fundamental
concepts of Nevanlinna theory, and we use them without further
introduction.

1. Entire functions of genus at most one

Let f(z) be an entire function of genus at most one. Then its
logarithmic derivative can be represented in the form

(1.1) J}'((:)’: 2 ic+n (=)

where a. are the zeros of f(z), m is a non-negative integer and C is a
suitable complex constant.
Hereafter we suppose that all the zeros a, satisfy

(1.2) _1<Re a.<1.

Then it follows from (1.1) and (1.2) that

(2 1
(1.3) Re 7 - =C*+ 1 Re ()

with a suitable real constant C*,
1.1 First of all we prove the following fact.

Lemma 1. Suppose that f(z) satisfies

(1.4) Re J}((ZZ)) >0

Jfor values of z==x-+1y with x>1, and that f(z) approaches infinity as
the variable z tends to infinity along the positive real axis. Then for
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Distribution of values of entire functions

an arbitrary point z*¥=x*+1y* with x*>>1, the function f(z) assumes in
the half plane x>x* all finite values w such that arg w=arg f(z*) and

|wl>]/(z*)].

Proor. By the condition (1.4), f’(2) 0 for values of z=x-+ iy with
x>1. In particular, f'(z*)#0. Let w* be f(z*), and let E (w, w*)
stand for the regular element of the inverse function of f(2) with
center w* and satisfying E(w*, w*)=z*  Now let us continue analyti-
cally this element E(w, w*) along the ray /: arg z=arg w* toward the
point at infinity. Then we have an analytic continuation f~*({J;) with
algebraic character along this ray 7 up to some point sw* of I, where s
is real finite greater than 1 or infinite. Of course, we may assume that
the continuation f~*(/;) defines a transcendental singularity at this end
point sw*, because f(z) being an entire function does not assume the
value infinite. From this continuation F-'(/s), we can thus define the
curve C.z=2z(t) (1=t<s) that goes from 2z*¥*=z(1) to the point at
infinity and satisfies

(1.5) Flatt)) =1f (%)

for 1=¢<s.  Evidently, Re z(#)>1 on some interval 1<¢<#* with
1<t*<s. Since f'(x+1y)*=0 for x>1, the function z(#) is surely
differentiable on this interval 1<¢<#*, It therefore follows from (1.5)
that

SN2 (D) =f(2%),
so that

fra@) 1
f@®)  #Z@

for 1<i/<¢*. Hence by virtue of (1.4), the real part of z(#) strictly
increases as the real parameter ¢ varies from 1 to ¢*.  Particularly,
Re z2(&)>x* for 1<t<t*. By this fact, we finally see that the asymptotic
path C lies entirely in the half plane x>x* save for its initial point
z*. Consequently if the value s is infinite, then by means of (1.5), the
function f(z) assumes on the curve C all finite values w such that
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arg w=arg w* and |w|>|w*|., This is the desired result. Next let us
suppose that the value s is finite. Then by (1.5) again, f(2) converges
to the finite value sw* when z goes to infinity along the curve C. . On
the other hand by the assumption, f(z) approaches infinity along the
positive real axis. Therefore by means of the classical Lindelof’s
theorem [8], the function f(z) assumes every finite values except O in
the half plane x>x*. Hereby we also obtain the desired result. This

completes the proof,

1.2 Now let us suppose that the real constant C*, given by (1.3), is
positive.  Then it is clear from (1.3) that

f'(2)
S (@)

(1.6) Re > C*>0

for values of z=x-+iy with x>>1. Hence it is also clear from this (1.6)
that

4
10817 | ~log s | = [ " Re . -at

= C*(x—x4)

for real values of x and x4, with x>x,>1. Hereby f(x) converges to
infinity as the real variable x increases without bound. Therefore
f(2) satisfies the hypothesis of the above Lemma 1. Besides, by
virtue of (1.6), we can find that

arg f(h+it) —arg f(h+15)

J' Re S (htiy)
B fhtiy)

=C*(t—s)
for real values of %, s and ¢ with 2>1 and s<{¢. This means that for

each real £ with ;>1, the argument of f(A-+y) is a continuous, strictly
increasing and unbounded function of the real variable ¥.  Accordingly
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Distribution of values of entire functions

we at once obtain the following

Lemua 2. Let C* be the real constant defined by (1.3), and let h be
a real number greater than one. Suppose that the constant C¥* js
positive.  Then in the half plane Re z2>>h, the function f(z) assumes
all finite values w of some annulus of the form R<|w|<-+ oco.

Considering the function f(—2) instead of the original f (2), we can
treat the case when the real constant C* is negative,

Lewma 3.  Assume that C* is negative. Then for each real h with
h>1, the region {f(2):Re z<_—h} covers some annulus R|w|<+ oo
entirely.

It remains to discuss the case where C* is equal to 0. In this case
we further suppose that f(2) has at least one zero point. It then
follows from the relation (1.3) that

| . J'(@) 1
(1.7) Re =5 :ZRe<z—dn),

n

so that

log| /(x)| ~log|f i) | = Slog | 2%

for real values of x and x, with x>x,>1, Hereby f (x) converges to
infinity as the real variable x increases without bound. Hence in this
case the function f(z) also satisfies the assumption of Lemma 1
provided f(2) has at least one zero point. In addition to this fact, by
means of (1.7),

arg f(h+ir)—arg f(h—ir)
7 1
- Z_{,‘J—rRe ( htiy—an )dy

for positive values of £ and » with 5>>1. Here let us recall the integral

(1.8)
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=+ o0

X
J i D=

— OO

where x is an arbitrary real positive constant. Then from (1.8), we
deduce that

lim inf (arg f(h+ir) —arg f(h—ir)) =n=,

r—>+o0

provided that f(z) has at least #» zeros counting multiplicity. Con-
sequently if f(z) has at least three zeros, then it is possible to find a
positive number 7* satisfying

arg f(h+ir*) —arg f(h—ir*) =2n.
By this observation, we obtain the following result.

Lemua 4.  Assume that f(z) has at least three zeros counting
multiplicity, and that the real constant C* is equal to zero. Then for
each real h with h>1 the regions {f(2):Rez>h} and {f(2):
Re z<—h} both contain some annulus of the form R<|w|<

+ oo,

1.3 The foregoing lemmas are sufficient to yield the following theorem.

Tueoren 1. Let f(2) be an entire function of genus at most one,
all of whose zeros lie in the closed strip —1<Re z<1.  Assume that
neither the region {f(2):Rez>>1} nor the region {f(2):Rez<-1}
contains any annulus of the form R<|w|<+oo, Then the function
f(2) reduces to a polynomial of degree at most two.

Proor. By the above lemmas, the real constant C* must be equal to
0. Furthermore f(z) has at most two zeros. Hence this function
f(2) can be written in the form

f(2)=P(2) exp (Az+B),

where 4 and B are suitable complex constants with Re A =0, and P(z)
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Distribution of values of entire functions

is a polynomial of degree at most two. For a moment suppose that
A=+0. Then it is clear that f(z) converges to 0 as z tends to infinity
along the ray arg z==/4 or along the ray arg 2= —=/4. Hereby in the
half plane Re z>>1, the function f(z) assumes all finite values infinitely
many times other than 0. This is clearly absurd by the assump-
tion. Therefore the constant A must be 0. This completes the
proof.

Combining this theorem with the proposition B mentioned in the
introduction, we can obtain the following fact.

CoroLrary. Let f(z) be an entire function of finite lower
order. Suppose that there exists an unbounded sequence {wn} such
that all the roots of the equations f(z)=wn lie in the closed strip
—1=Re z=1, Then f(2) is a polynomial of degree not greater than
two,

This corollary is not new, since it is a main result of S.
Kimura [4]. However, our deduction of this fact may be of some
interest because of its simplicity.

2. Relations between grbwth and distribution of values

Let f(2) be an entire funciton with £(0)=1. Then for positive
real values of 7,

2r
—}r—jo log| f(rei*) | cos t dt

2.1 d
(2.1) — yRe<f'<o>>+ZRe(;n—ar");

jag|<?

where a, stand for the zeros of f(z2). Here we assume that all the
zeros a4, are distributed in some angular region |argz|=<a<lz/2. It
thus follows from this (2.1) that
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27
" tog] rereny || d
2Cr+@2N(,0, /)+S(r) cos «a,

where C=Re (f’(0)) and
1
(22) s = (F=5)Nw0, pat.
Hence we find that

(2.3) 4T(r, H=Cr+2(4cosa)N(r,0, f)+S()cosa

for positive real values of 7,

2.1 Now we further assume that the order or the lower order of the
function N(r,0, f) is equal to 1. Then we have a sequence of Polya
peaks of the second kind, order 1 for N(»,0, /) [9]. In other words,
there exist positive sequences {»,} and {s»} such that

(2.4) Yn—>F 00, Sp—>+00, Sp/¥a—0
as n approaches infinity, and such that
2.5) N (40, /)2 1A+0())—N(ra, 0, )

for snst<ra, n=zn*.  Combining this (2.5) with (2.2), we thus obtain

Stz A+o) (log 2=~ 5 )N (2,0, £,

so that

S Nty =
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Distribution of values of entire functions

by means of (2.4). Consequently if

lim inf -Jy%@mﬁw,
then the above (2.3) implies

... NG, )

im ot G

Lexma 5. Let f(2) be an entire function of lower order
one. Suppose that all but a finite number of its zeros lie in some
angular region |arg z| <a<lxn/2, and that

(2.6) 0<lim inf—z%—Jlé + oo,
Then
..o N O, f)
2.7) hﬂwmf TCr ) =0.

Furthermore if the order of f(2) is finite, then the function f(z) has
no finite deficient values other than 0.

Proor.  Let P (z) be a polynomial and let us set F(2) = f(2)/P(2).
Then it is clear that

T(r’ F) - T(T, f) :OCIOg 7’),
N, 0, F)— N0, f)=0ogn),

Hence we may assume without loss of generality that all the zeros of
f(2) belong to the angular region |argz|<a and f(0)=1, Here we
may further assume that

N(r,0, f)>0.

lim inf p

y—>00
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For otherwise, the desired (2.7) follows at once by the assumption
(2.6). Of course, the lower order of N(7,0, f) is not greater than that
of T(r, f). Thus the lower order of N (7,0, ) is equal to 1. There-
fore by what mentioned just above, we obtain the desired result (2.7).

The second statement is an immediate consequence of this (2.7) and
the second main theorem of Nevanlinna theory. This completes the
proof.

2.2 Let f(2) be an entire function of order at most one. We assume
in what follows that there exist three real numbers s;,52,83 and three
distinct complex numbers w;, w., w3 such that |

(2.8) $1<852< 8551+ 7,

and such that for each number n(n=1,2,3), all the roots of the
equation f (2) =w, lie in the closed strip

(2.9) Sn={z:—1<Re(zexp (is,)) <1}.

Evidently, any function of the form a+bexp(cz), where a, b and ¢ are
constants, does not satisfy the above assumption. Hence the function
f (2) takes every finite values at least once.

Now let us consider the functions defined by

(2.10) Fo(2) = f(tn2) —tn, Un=€Xp(—iSy) (n=1,2,3).

Then these functions are entire and by the assumption, all the zeros of
F.(z) are distributed in the closed strip —1<Rez<1, Of course, the
genera of the functions F,(z) are at most one. Hence by the
definition (2.10), the function f(z) approaches infinity along the ray
arg 2= —s, or along the ray arg z=—s,+7(n=1,2,3).

Lemua 6. () Assume that f(z) approaches infinity as z tends to
infinity along the ray argz= —s,. If $;+n/2<s,, then all but a finite
number of the solutions of the equation f (2) =w, lie in the closed half
Strip

S~ ={z:|Re(@:2) | =1, Im(#.2) <0}.

226



Distribution of values of entire functions

If si+x/228s, then all except a finite number of the roots of f(2)=1ws
are contained in the closed half strip

Ss~={z:|Re(#32) | <1, Im (#:2) <0}.

(I1) Assume that f(z) approaches infinity along the ray argiz=
—S1+7. Then either all but a finite number of the roots of the equation

F@=w. lie in the closed half strip

Sy*={z:|Re(#%2) | =1, Im(#:2) 20},

or else all except a finite number of the roots of f(z)=ws are
contained in the closed half strip

Sst={z:|Re(@2) | =1, Im(#;z) =0}.

Proor.  (I) We assume first that s;+7/2<ss. Then it is possible to
take two real numbers a and p such that

—s3+n/2<a<l —5:,<<b<l—s;+7/2,
(2.11)
a<l—S+7n/2<b.

From (2.8) and (2.11), we can further take a positive number R such
that the closed sector

H={z:asarg z5b, |z| Z R}

is contained entirely in the intersection of the half planes Re(#;2)>1
and Re(#32)<{—1. Hence by the assumption, in this sector H, the
function f(2) fails to take the two finite values w; and ws. Besides,
from (2.11), the ray z=u,t(¢t=R) lies in the sector H. It therefore
follows from Lindelof’s theorem that

lim f (re*t) = oo

r—> -+ oo
uniformly for e*<¢<b*, where a* and b* are arbitrarily fixed real
numbers with a<la*<6*<(b. Here let us notice (2.11) again. Then
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we find that
lim f (us(x+1y)) =00

y—-)+00

uniformly for —1=x=1. In particular, there exists a positive real
number R* such that |f(2)|>|w:| provided |Re(#:2)|=1 and
Im(#,2) = R*, By this fact, we at once have the desired result.

Next let us consider the case when s;4#n/2=s;. In this case,
—5<—8:+7n/2 and —s,—r/2<—~s3+n/2 by virtue of (2.8). Hence it
is possible to find two real numbers ¢ and d satisfying

— 81— /2< L —5,<d< —s:+7/2,

(2.12)
< —s3+n/2<d,

Let us set the sector A:c<argz=<d, Then the intersection of this
sector A and the closed strip S; defined by (2.9) is clearly bound-
ed. Also, the intersection of A and S, is bounded. Therefore by the
assumption, neither w; nor w, is taken infinitely often by f(z) in the
sector A. Moreover, by means of (2.12), the sector A contains the
rays arg z= —s; and arg z=—s;+r/2. Thus, using Lindelof’s theorem
again, we can see that
lim f (us(x+y)) =00

y—>+o

uniformly for —1=<x<1. This means that the equation f(2)=ws; has
only a finite number of solutions in the closed half strip Ss*. This is
the desired result. The proof of the assertion (I) is now complete.

(II) Let us consider the auxiliary function F(2)=f(—2). Then it is
clear that F(z) is entire and of order at most one.  Evidently, for each
number n (n=1, 2, 3), all the roots of the equation F(z)=w, lie in the
closed strip S. defined by (2.9). Furthermore F(2) tends to infinity
along the ray arg z=—s;. Hence by virtue of the above assertion (1),
either all but a finite number of the roots of F(z)=w,; are contained in
S,, or else all but a finite number of the roots of F(2)=ws; lie in
Ss;.  Turning back the original function f(2) we at once obtain the
assertion (I). The proof of Lemma 6 is now complete.
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Distribution of values of entire functions

2.3 We are now in a position to prove the following theorem.

Turorex 2. Let f(2) be an entire function of order at most
one., Assume that there exist three different finite complex numbers
w,, we, Wy and three closed strips Si*, S;*, S* of the complex plane
such that for each n (n=1, 2, 3), all the roots of the equation f(2)=wn,
are distributed in the strip Sy*. Assume further that no two of the
three strips S»* run parallel with each other. Then the function f(z)
reduces to a polynowmial.

Proor. By the assumption, we can assume without loss of general-
ity that the strips S,* are defined by

n¥= {Z:—1§R3(Z exp(isn))él},

where s, are suitable real numbers with
§1<852<<83< 81+ .

In what follows, as usual, by f~!(w.), we denote the set of all the

roots of the equation f(2)=w,. Then by the above Lemma 6, for

each pair p and g with 1<p<qg<3, either the set f~!(w;,) or the set

J~*(wy) is contained in some closed half strip of the complex plane.
Here for a moment, we further assume that

(2.13) lim inf_?_(gll_>o.'

—>»00

Then the genera of the functions f(2)—w. are exactly one. Hence
the function f(z) has the value w, as a deficient value provided that all
the roots of f(2)=wx. lie in some closed half strip. Accordingly, at
least two of the three values w;, w., w; are deficient values of
Jf(z). However this is clearly absurd by Lemma 5. Consequently,
(2.13) is false. It thus follows that all the zeros of f‘(z) are contained
in each strip Sy*, so that they are contained in the intersection of the
strips Si*, S2* and Ss*. Therefore f’(2) has only a finite number of
zeros. Hereby f’(2) is a polynomial, since (2.13) is false. This is
the desired result. '
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3. Further relations between growth and distribution of values

Let s be a real number with 0<ls<<z/2, and let G, stand for the
angular region |arg(z—1)|<(s. Then the transformation

(3.1) 2=hw)=1+(172)"  (B=25/m)

maps conformlly the unit disk |w|<{1 onto the region Gs. It is clear
that

W=k @) = Te w=G=Dr =1/,
so that
1—|w| = 2Reu

=142|ul 4 |ul?-

Therefore we find that

o ‘ ) cosrt
(3.2) 1| b=t Qtre) | 2S5 1

for real values of » and # with =1 and —s<¢#<s.
3.1 Our task now is to prove the following

Lemma 7. Let f(2) be an entire function of finite lower order
p. Assume that f(z) fails to take two finite values in the regions
larg(z—1) |<s and |r—arg(z+1)|<s, where S is a positive real
number with 0<s<n/2. Then either p=rn/(2r—4s) or else p<r/2s.

‘Proor. We may assume without loss of generality that the function
f(z) omits the values O and 1 in the regions |arg(z—1)|<s and
|z—arg(z+1)|<(s. Then the composite function F(w)=f(h(w)),
where k(w) is the transformation defined with (3.1), is regular in the
unit disk and fails to take the values O and 1 there. Hence Bohr and
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Distribution of values of entire functions

Landau’s theorem tells us

(3.3) log | F(w) | S 1=

in the unit disk, where A is a positive constant depending upon |F (0) |
only. It therefore follows from (3.2) and (3.3) that

. 14
(3.4) log| f (1+47e) | _S_ZAW

for real values of » and ¢ with »=1 and —s<<{<s.  Similarly we can
see that

. rr
(3.5) log| f(=1—re) | S2A— o7

for r=1 and —s<t<s. |
Now for each positive », we define the set of arguments

(3.6) E@={t:log| f(re®) | 2 T(r, f)/log 7},

where ¢ is understood to vary between —z/2 and 3z/2. Then the
spread relation [1] implies

3.7 lim sup meas(F(»)) =min(x/p, 27).

y—> o0

Hereafter we may further assume that
1 i
(3.8) 5 <0< 9. 4s -

For otherwise, there is nothing to prove. Let s* be a real positive
number such that

(3.9) 2r —ds<sH <.
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Then by virtue of (3.7), there exists a positive sequence {7,*} satisfying

Tn*———)+00 (%-—)—i—-OO),

meas(E(r,*)) >s* (n=1).

Hence for each 7, we can take an argument #.* of the set £(».*) such
that |6,.*| = (2r—s*)/4 or |n—i*| = (2r—s*)/4. Putting

Zn* - rn* eXp (itn*),

we thus have

(3.10) log| f(2a*) | = T(ra*, f)/log 7n* (n=1)

by the definition (3.6). On the other hand, since (2r—s*)/4<s< /2,
either

Re z,* = 7r,* cos t,¥*=7,* cos s

or else

Re z,* = 7,* cos £,*< —#,* cos s,

Hereby for sufficiently large #, Re z,%3>1 or Re zz*<{—1, so that we
can set

Zn* == 1 + ¥Yn exp(itn)

if Re z,*>1, and
2% = —1—r, exp(ity)

if Re z,*<—1, where 7, is real positive and ¢, is real with
—n/2<t,<<n/2. Evidently, 7. *—1=rm=r.*+1 for nzn*. There-
fore it is clear that

(311) Vn*/rn -—> 1
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Distribution of values of entire functions

as n approaches infinity. Furthermore by means of (3.9) and (3.11),
we can find a positive number #* such that (2z—s*)/4<t*<s and
|t.| £t* for sufficiently large #. It then follows from (3.4) and (3.5)
that

ran’

' T
(3.12) log| f (2™ | 2245 rt <2A cos rt*

for n=wn*  Here let us remark that y=1/8=x/2s., Combining this
(3.12) with (3.10), we finally obtain that

T(ra*, ) ¥al
log r,* =24 cos rt*

for sufficiently large #, so that

: log T(ra* ,f) <
lim sup g7 =7

by virtue of (3.11). Consequently the lower order p is less or equal to
z/2s provided it satisfies (3.8), Lemma 7 is thus proved.

3.2 We continue our discussion. Let f(2) be an entire function of
finite lower order p, and let s be a positive number with z/4<s<C
n/2. Again, suppose that the function f(2z) fails to take the values
0 and 1 in the regions Jarg(z—1)|<s and |r—arg(z+1)||<s.
Then the above Lemma 7 implies either p==/(2m—4s) or else
p=m/2s.

Hereafter we consider the case where p<z/2s holds. With a., we
denote the zeros of f(z). Then by the assumption, neither |arg(a,—1) |
<s nor |z—arg(a.+1)|<s. Recall that =/4<s<w/2. Hence it
is possible to find an angular region |7—arg z| <a<{z/2 such that all
but a finite number of the a.* lie in this angular region. Now
let us consider the auxiliary funciton defined with

(3.13) F(2)=f(2%) f(—2%).
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Then F(2) is single-valued and entire, and it vanishes only at the points
an®. Hence it follows that

(3.14) N@%0,F)=2N({,0, )

for positive values of 7. Since all but a finite number of the a.?
satisfy |r—arg a,?| Za, it is also possible to find a polynomial P (2)
such that the function g(2)=F(—2)/P(z) is entire with g(0)=1 and
all the zeros of which satisfy |arg z|=a. For this function g(2), by
means of (2.2) and (2.3), we can see that

AT(r,g)=Cr+21 +cos ) N(r,0,2) +S(»)cos a

(3.15) ’
=Cr+(cosa)r Q—A—[—q—’i—?’—g)-dt

for real positive values of 7, where C=Re(g’(0)). Here we further
assume that

(3.16) 37| @] 2= +oco.

Then by (3.14), the integral

+ oo + o0
N0, .. N, 0, F)
4.[ £ dt—fo 22 dt

0
diverges. Since N (r,0,F)—N(7,0,2)=0(ogr), the integral
+ oo

N, 0,
f (tz g) dt

0

also diverges. It thus follows from (3.15) that

[ RAGT 2

r—>00

so that
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Distribution of values of entire functions

(3.17) limﬂ%”lr__).:+oo

y—>00

On the other hand by the definition (3.13), it is clear that
T F)S2T(, )
for all positive 7. Accordinglyv from (3.17), we find

im TG0 e

7—>00

which means that the lower order p is not less than two. However
this is absurd by the assumption p<=7/2s<2. Consequently, (3.16) is
false. Hence the function f(z) can be written in the form

f(2)=E(2) exp(g(2)),

where E (2) is the canonical product formed with the @, as zeros, and
g(2) is an entire function. Since the genus of E(2) is at most one, it
follows that T (7, E(2))=0(?%). We therefore have

(3.18)  lim inf T, eXP2<g(2>)> L inf (r f)

r—>oa r y—>00

Again, by the assumption p=#/25<<2, the right hand side of (3.18)
must be equal to 0. Hereby the entire function g(z) reduces to a
linear function. By these facts, we finally obtain

F@Df(—)=A*E(@DE(-2)
_A*( l)m zzm. Tr( 2 )

an+*0
where m is a non-negative integer and A* is a suitable non-zero
constant. Hence for positive real values of 7,

(3-19) log|f(n f(— )| =0log7) + Zlogll—‘

an¢0
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If Re a,’<0, then Re a,"2<0, Hereby

7»2.
an®

7/2
| 1-4
a

n

=1—Re >1

provided Re a.*<0. Moreover since

2 rZ

anz y

r2
an?

r4
| 1- =1+-oq —2Re

Re a,2<<0 implies

7;2

> Tal

r2
an?

| 1-

for all positive ». It therefore follows from (3.19) that

v
| @x|

log | f(Nf(—7r)|=20og r)+2) log*
(3.20) z
:O(log 1’) +2N(7, 0) f)

for positive real values of . Here let us recall the inequalities (3.4)
and (3.5). Then for each real » with »>1,

(3.21) log| f(Nf(=N|=4A@—Dr

with y==/2s.  Combining (3.20) and (3.21), we at once obtain
(3.22) - N(@,0,)=00M.

Similarly, applying the above argument to 1— f(z), we can also find
(3.23) N1, f)=00m.

Hence by (3.22) and (3.23), the second main theorem of Nevanlinna
theory yields that

T(r, f)=00"),
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so that the order of f(z) does not exceed y=n/2s.
We have therefore proved the following fact which is an improvement

of the above Lemma 7.

Leuma 8. Let f(2) be an entire function, and let s be a real
positive number with n/4<s<wx/2. Suppose that f(z) omits two finite
values in the regions |arg (z—1)|<<s and |=—arg(z+1)|<s. Then
either p=n/(2r—4s) or else A<r/2s, where p and 1 indicate the
lower order and the order of f(z), respectively.

3.3 Now we are in a position to piece together the foregoing results
and prove the following final theorem.

Treorem 3. Let f(z) be an entire function of finite lower
order. Suppose that there exist an unbounded sequence {w.} of
complex numbers and a sequence {u,} of complex numbers of modulus
one such that for each natural number n, all the roots of the equation
f(2)=wx lie in the closed strip

S.={z:|Re(ur2) | £1}.

Then the function f(z) must be a polynomial of degree not greater
than two.

Proor. Assume first that no two of the strips S, run parallel with
each other. Then for an arbitrary real number ¢ with 0<e< min
(n/2p,7/2) , where p indicates the lower order of f(2), it is possible to
find two natural numbers p and ¢ such that w,+*w, and

(3.29) |arg up,—arg uq| <e.

With these numbers #, and u,, let us set

(3.25) c=R exp(—i(arg up+arg uy)/2),

where R is a positive number‘ with R cos ¢/2>1, Then from (3.24),
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—n/2<arg(upcet*) =t+ (arg up,—arg uy) /2<n/2,
—r/2<arg (u,cett) =t+ (arg u,—arg u,) /2<n/2
for real values of ¢ with |t]|<(x—e)/2. Hence it is clear that

Re(uycz) =Re(u,c) +Re(upc(z—1)) =Re(upc) >1,
(3.26)
Re(u,02) =Re(usc) +Re(u,c(z—1)) = Re(ugc) >1

for values of 2z satisfying larg(z—1)|<(7c—'s)/2, Similarly, if 2z
satisfies |r—arg(z+1) |<(x—¢)/2, then

Re(u,cz) = —Re(upc) + Re(uyc(z+1)) < —Re(uy0)< —1,
(3.27)
Re(#,2) = —Re(uqs) +Re(uc(z+1)) £ —Re(u,0)<—1,

These facts (3.26) and (3.27) mean that the entire function f(c2),
where ¢ is the constant given by (3.25), fails to take the two finite
values w, and w, in the regions |arg(z—1){<(zx—e¢)/2 and
|7 —arg(z+1)|<(z—e)/2. It therefore follows from Lemma 8 that
either the lower order of f(cz) is not less than 7/2¢ or else the order of
f(c2) is not greater than 7/(x—¢).  However, since the lower order of
f(c2) coincides with that of f(2) and e<w/2p, the former does not
hold. Consequently, the order of the function f(z) does not exceed
z/(x—e). Furthermore since e can be chosen as small as we #please,
we finally obtain that the order of f(z) is at most one. Now let us
note Theorem 2. Then the function f(z) reduces to a polynomial,
because f(z) satisfies the conditions of Theorem 2. Since the se-
quence {w,} is unbounded, it is clear that the degree of the polynomial
f(2) is at most two. This is the desired result.

It remains to consider the case when infinity many of the strips S,
coincide with each other. However, in this case our desired result
follows immediately from Corollary stated in the section 1. The proof
of Theorem 3 is now complete.
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