Remarks on the Growth of Meromorphic Functions

By Tadashit Kobayashi

Let f(z) be a meromorphic function and let 7(r, f) be its characteris-
tic function. Then the order A and the lower order ¢ of the function
f(z) are defined by the relations

A =lim suplo—gfﬁfl, o =lim in'flo—g—j—(m
oo log r 700 log r
respectively. If the function f(z) has finite order, the concept of genus
g can be defined [10]. The genus ¢ is zero or a positive integer and
satisfies g< A <¢g+1 in general.

It 1s known that the growth of a meromorphic function is closely
related to the distribution of its zeros and poles. For instance a simple
behavior of the arguments of the zeros and poles of a meromorphic
function i1s almost enough to bound the growth of the function (cf. [1]},
{31, {41, 151, [7]). In particular the properties of meromorphic functions
with negative zeros and positive poles have been investigated
extensively (cf. {8], {11], [12]).

The purpose of this note 1s to investigate the growth of meromorphic
functions whose zeros and poles obey some simple geometrical
restrictions on their position. We shall prove the following results.

Theorem 1. Let f(z) be a meromorphic function of genus zero. If
all its zeros {a.} satisfy |7 —arg a.|< 7y and all its poles {b,}
satisfy jarg b. | < 7, where 7 1s some real number with 0< v <= /2,
then

.. N, 0,H+N(r. ) 21— A%
i ini (. f) STATE AZcost !

where A indicates the ovder of the function f(z).
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Theorem 2. Let f(z) be a meromorphic function of finite genus q
>1. Assume that all its zeros {a.} and poles {b.} satisfy |n —
arg a,| <7y and |arg b.| < v, respectively, where 7y 1is some real
number satisfying 0<2qr <=wn . Then the lower order p of the
function f(z) satisfies p >2[(q—1)/2]+1, and

.. N(r,0,H+N(r,f) 2(p2—pY)
Lok T(r,f) = u2—pit plicospy ’

where p is the integer 2[(g—1)/2] +1.
Furthermore tf the real number 7 satisfies 0<2(g+2)r <m,

. N0, H+N(r, f) 2(s?— A?)
lim_inf T(r,f) S22t Alcos 57

where s is the integer 2[(q+1)/2]+1, and A denotes the order of
f(2).

J. Williamson [12] already showed the inequality ¢ >2[(g—1)/2]+1 in
the class of meromorphic functions having negative zeros and positive
poles. Further he mentioned without proof that for any positive even
integer ¢ and for any real A, g with ¢—1<u <g< A <g+1, there
exists a meromorphic function of order A and lower order g whose
zeros lie on the negative real axis and whose poles lie on the positive
real axis. Hence the lower bound 2[(¢—1)/2]+1 1is sharp. For
completeness we shall present such meromorphic functions in the final
section.

An immediate consequence of Theorems 1 and 2 is the following

Corollary 1. Let f(z) be a meromorphic function of finite genus q.
Assume that either the order or the lower order of the function f(z) ts
an odd integer, and that all its zeros {a.} and poles {b.,} satisfy
| m —arg a,|< 7y and |larg b,|< 7, respectively, with some real 7
satisfying 0<2(q+2)r < m. Then

N(r0,/)+N (r.f)
T(r.f) N

0.

Iim inf
y— oo

In particular, the function f(z) has no finite deficient values other
than zero.
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Remarks on the Growth of Meromorphic Functions

Let g be an arbitrary positive even integer, and let {a.} be the
sequence of real positive numbers defined with a.= v (v >1). Then
the meromorphic function

E(—z/a.,q)

&= e ey @)

1s of order g, of regular growth, and satisfies

im N0 N+N(r,f) 2
o T(r,f) qg+1°

Hence in the above Corollary 1 we cannot replace an odd integer by a
positive integer. We shall calculate these facts explicitly in the final
section.

The above Theorem 2 is easily extended to entire functions. The
next result, stated without proof, follows readily from the methods of
this paper.

Theorem 3. Let f(z) be an entire function of finite genus q=>1.
Assume that all its zeros lie in the sector |arg z| <y, where 7 1is
some real number satisfying 0<2q v < n. Then the lower order 1 of
the function f(z) satisfies ¢ >=q, and

.. N(r,0,f) 2(p#2—q%
<
BTGNS at g ucos 7

Furthermore if the number 7 satisfies 0<2(g+1)y <,

.. N0, 2{(g+1)2— A?}
o = T 1= A%+ AZcosiq=1) 7’

where A indicates the order of the function f(z).

It should be remarked that the inequality ¢ >q 1s already proved and
this lower bound g i1s no longer true when the opening of the sector
exceeds 7 /q (cf. [9)]).

From Theorems 1 and 3 we obtain the following fact which is an
improvement of a result of Shea [11, Corollary 2.2].
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Corollary 2. Let f(z) be an entire function of finite genus q.
Assume that either the order or the lower order of the function f(z) is
a posttive integer, and that all its zeros lie in the sector larg z| <7
with 71 satisfying 0<2(qg+1)ry <=m . Then the function f(z) has no
finite deficient values other zero.

1. Lemmas. Our starting point will be the following elementary fact.

Lemma 1. Let f(z) be meromorphic with f(0)=1. Assume that all
its zeros {a.} and poles {b.} satisfy

| m—arga. | <r<=x/2, Jarg b | <7r<=n/2
respectively. Then we have
AT(r, =21 +cos TIN(+rcos 7 | (4=2=r=N(@de+Cr

for all values of r>0, where N(r)=N(r, 0, f)+N(r, f) and C 1s a
constant.

Proof. It is well known [10, p. 222] that

7 f 0)r= gzﬁlog | flre®) | e~itdt

14 -au Y bv
-7 — +7 ———)
iauZI<r(av r ) be?‘(r(bv r
for >0. Since | * —arg a,|< 7, it follows that
v a. ‘ ay | r
R < .
l§|<rRe(av r )_Ig\ <r( r ‘ av ‘ )COST
rt r
—cos 7 S E—Dyn(e,0).
07 t
Similarly, since |arg b.|< 7, it also follows that
-b-—y Y l bu I
Re(-——— > —
1§J<r (b, r) u§<r(1by1 r Jeos ¥

—cos 7 g'(i—i)dn(t,oo).
ol r

160



Remarks on the Growth of Meromorphic Functions

We therefore obtain

r

2T
Crnr> XO log | f(re®) | cos tdt+ mcos 7y §0<£_£)dn(t)’

where n(t)=n(t, 0)+n(¢, ) and C is the real part of f(0). By a rough
estimation and Jensen's formula,

2
0

2
X log | f(re®) | cos tdt |_<_ S log | fire®) || dt=27{ 2T(r.f)— N(r)}
0
On the other hand, by the definition of N(r), we obtain

g ;t‘ldn(t):r—ln(r)—l-r‘lN(rH— X rt—zN(t)dt,
0

r

S ;tdn(t):rn(r)—rN(r)+ X Nt

0

for r>0. Consequently

Cr=>—=2{2T(r,/)—N@} + {2N{r)+ S ;(rt‘z—r“l)N(t)dt }cosy
for all values of >0, which proves Lemma 1.

By this Lemma 1 we at once have
r/2
AT(r, f)=rcos 7 S (t=2— r-ON()dt +Cr
0
r/2
>C rg £-2N(t)dt +Cr
0
for r>0, where C° is a positive constant. Hence 1if the integral
¢~ t:N(t)dt i1s divergent, T(r, f)/r tends to infinity with ». In

particular the lower order g of the function f(z) satisfies ¢ >1.

Lemma 2. Let the assumptions of Lemma 1 be satisfied. Assume
further that the zeros {a.} and poles {b.} satisfy

Zy ‘ ay \ _1+Zu ‘ bp ’ *1:+OO.

Then the lower order 1 of the function f(z) is not less than one.
Furthermore if p is finite,
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.. N, 0,H+N(r, f 2(p2—1)
<
i 1ot T(r,f) T pli=ldplicosy

Proof. By assumption the integral §¢~ t°N(t)dt is divergent, where
N(@r)=N(r, 0, f)+N(r, f). Hence we have already proved the first
statement.

Now we shall prove the second statement. We assume for a moment
that the order of the function N(r) is less than that of 7(r, f). Then it
1s clear that

lim an(rOf)+N (r.f)

AT

so that the desired inequality holds.

Henceforth we may assume that the order of N(r) is equal to the
order of the function T(r, f). Evidently the lower order of N(r) does
not exceed the lower order p of T(r, f). Hereby for the function N(r),
there exists a sequence {r.,} of Polya peaks of the second kind of
order ¢ [11, p. 208]. Let {r.} and {#”.} be the associated
sequences. Then the three sequences {r'.}, {r./7".} ., {r'./r.}
converge to infinity as v tends to infinity, and

NB)=(0+o(1)E /r.)2EN(r.)
for ', <t<r”.. It therefore follows that
- g T — r )N = (1 + o(1)N(r ) S Tt e a s tidy
0] r

for all sufficiently large v . Hence if ¢ >1,

rvg t-2—riN@mde= 2L ey
©ri—1
so that the inequality of Lemma 1 yields
TG, > {2+20057’+2<1+:(21))COST NG )+Cr .

—1

Since T(r, f)/r grows to infinity with r, we thus obtain
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ot Y

2—1+ p2cosy
pr—1

o> (£

for all sufficiently large v . The assertion now follows.
For the case p =1,

r. XOh(t‘z—r:z)N(t)dtZ(l+o(I)) {log(r./r" .)—1,/2+0(1)} N(r.).
Combining this information with the inequality of Lemma 1 we obtain
AT (rv, )= +o0(1)) {log(r./r.)+0O1)} N(r.)cos vy +Cr,

for all sufficiently large v. Accordingly N(r.)/T(r.) converges to 0 as v
tends to infinity, and hence the assertion also follows. The proof of

Lemma 2 1s now complete.

We shall require the following elementary result on meromorphic
functions of genus zero.

Lemma 3. Let f(z) be meromorphic with f(0)=1. Assume that its
genus is zero, and that all its zeros {a.} and poles {b.} satisfy

| m —arg a, | <7y <=w/2, l|largb. | <7r<n/2

respectively. Then

+ oo

N()dt +rcos 7 g -IN ()t

r

r

ArT(r,f)=2(1 —cos 7y )rN(r)+cos r S

0

for all values of r>0, where N(r)=N(r, 0, /) +N(r, f).
Proof. It is clear that

2 2
S log | 1—7e“9 | cos tdt=-—>] (l/n)g r*cos n(t —s)cos tdt
0 n>1 0

= — 7rcos s

for 0<r<1 and any real s. Hence for »>1 and any real s,
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2n 2n
X log | 1—re®—9 | cos tdt= S log | (1/7)e=t=9—1 | cos tdt
0 0

=—mn(l/r)cos s.

It therefore follows that

2n
>, S log | 1—(re*/a.) | cos tdt
0

__ y freosa, s r |av|lcosa,

lav|>r 1 a. ‘ lavi<r r

for r>0, where «a, denote the arguments of zeros a.,. By the
assumption |7 —a,| <7, cos a,<—cos v for all v. Hereby

2n
2 XO log | 1—(re*/a,) | cos tdt

Tr T |a,l
= {\aZu|>r | a, | + r§|3r r b cosy
=r{ S;(t/r)dn(t,O)-l- g +°°(r/t)dn(t,0)} cos 7y

for r>0. Similarly, for the poles {b.} , we have

2
> X log | 1—(ret/b,) | cos tdt
0

__y Frcosf. s 7w [by[cosB,

(by|>r | by | [by|<r r

for r>0, where B, indicate the arguments of poles b,. By the
assumption | B.|< 7, cosB, >cos 7 for all v, so that

2x
D S log | 1—{(re*/b.) | cos tdt
0

s T | b, |
<X 7,7t T

[ bv|>r [byv|<r

}cos 7
r P
g So(t/r)dn(t,OO)-l— g (r/t)dn(t,0)} cos 7

r

for r>0. Since the genus of f(z) is zero and f(0)=1, we thus obtain

r

Sz"log | flre®) | cos tdt> 1 { S;(t/r)dn(t)+ X " /dn(®)} cos 7
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where n(t)=n(t, 0)+n(t, o). An integration by parts yields

X ¢/ 7)dn(t)=n(r)— S = in(t)dt=n(r) = N@)+ | ;r‘lN(t)dt

0 0

for r>0, and since n(r)/r and N(r)/r both converge to 0 as r tends to
infinity, we also have

+ o0 +

S +oo(r/t)dn(t)z X Oort_zN(t)dt—N(r)—n(r)

r

rt—2n(t)dt — nlr)= X

4 r

for r>0. Consequently, as in the proof of Lemma 1,

2 (2T, )=NeY = | " log | Jre®) | | dt

2
> g log | f(re®) | cos tdt
0

+ co

> { S ;r_lN(t)dH— S rt 2N (t)dt—2N(r)} cos7

r

for all real values of r>0, which completes the proof.

2. Proof of Theorem 1. We may assume without loss of generality
that f(0)=1 and that the order of the counting function N(r)=N(r,0,f)
+N(r,f) is equal to A. Then this function N(r) has a sequence {r,}

of Polya peaks of the second kind of order A. Let {#".} and {r".} be
the associated sequences such that {r’.} , {r./r’.} and {r"./ r.}

converge to infinity with v, and that

N> +o1))(t/rv)*Niry)
for ', <t<r",. With the help of Lemma 3 we obtain

AT (r.,f)—2(1 —cos v )N(r.)

ry r’y
tAry A idt+ S tA 2= Adt } N(r.u)cos v

o ry

>(1+o(1)) { S

for all sufficiently large v. Therefore if A <1,
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AT (r. ,f)—2(1 —cos 7 )N(r.)
1—{(r" v/r.)**! + (r"v/r.)*"1—1

=>(1+o(1) { /\+1 A1 }N(r.)cos r
=(1+o(1)) {1/“0:}) = (/\1)} N(r.)cos 7,
so that
T(r.v,f)—2(1—cos r)N (ru)>2+o/(\12)N(r,,)cosr.

This implies the desired inequality. If A =1,

AT (rv,f)—2(1 —cos 7 )N(r.)

—o(1)
A+1

>(14+0(1)) { +log(r” . /r.)} N(r.)cosr

for all sufficiently large v . It therefore follows that

N(r) ; N(r.)
e, S 76, )

which completes the proof of Theorem 1.

0<lim inf =0,

3. Proof of Theorem 2. We may assume without loss of generality
that f(0)=1. If the zeros {a.} and poles {b.,} satisfy

Shulav | 72+20, 16y | 79<+ o,

then by the definition of the counting function N(r)=N(,0,f)+N(r.f),
the integral §¢~ ¢! N(t)dt converges. Hence N(r)/r* tends to 0 as r
does to infinity. Therefore since the genus of f(z) is q, T(,f)/r*
converges to some positive value as r tends to infinity. Thereby A = pu
=gq, and N(r)/T(r,f) converges to 0 as r tends to infinity.

Henceforth we assume that

Zu ’au f _q+Zu lbu ‘ 9=+ o0,

Let p be 2[(g—1)/2]+1. Then p=q if ¢ is odd, and p=¢g—1 when ¢ is
even. In any case p is a positive odd integer and p<q. Hence
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2, lav | P42 Ib, | P=+o0,

and by the assumption 2¢ 7y <=w, |7 —arg a.” |<py <zm /2 and |arg
b | <pr <m/2 for all v. Now we consider the auxiliary function g(z)
defined by

gz)=flw O)f(w2 ) f(w3 ) flwr ),

where { =z and @ is the pth root of unity, that is, @ =exp(2 7 i/p).
Then g(z) is single-valued and meromorphic in the whole finite plane.
Clearly g(0)=1, and all the zeros and poles of g(z) are {a.?’} and
{b.*} , respectively, so that N(*,0,g)=pN(,0,f) and N(*,g)=pN(r,f)
for r>0. Furthermore it follows from the definition of g(z) that m(r’, g)
<pm(r,f), so that T(*,g)<pT(r,f) for r>0. In particular the lower
orders u¢ (f) and p (g) satisfy pu (g)<pu (f). By these facts we can
apply Lemma 2 to this function g(z). Accordingly the lower order u(g)
of g(z) satisfies ¢ (g)=1, and

N0+t N(rg) _ 2(p (g)i—1)

li f = :
im in T(r.g) r(gr—1+un{gicos pr

Hence the lower order. ¢ (f) of f(z) satisfies ¢ (f)=pu (g)>p, and
further

L NELOHENCELS 2t (g7 1)
M D S a(@i— 1+ p(e)cos pr

Since the real rational function 2(x*—1)/(x’—1+x* cos p r) is increasing
for x =0, we obtain

L NE, 0NN f) 2(p (S)*—p?

lim inf

Pt T(r.f) — n(fP=p+ p(f Yecos pr

which is the former estimation with the lower order ¢ of f(z).
Next we shall show the latter estimation

. N, 0,H+N(,f) 2(s>— A2
lim_inf T(r,f) = s2— A2+ AZcos s’

where s=2[(g+1)/2]4+1 and A is the order of f(z). The integer s is
odd, and s=¢g+1 or s=¢+2 according to whether ¢ is even or odd.
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Especially s>¢g+1>= A and sy <(¢g+2)ry <=m /2, so the right-hand side
of the above estimation is zero or positive. If the order of the counting
function N(r)=N(#,0,f)+N(r,f) is less than A, then the left-hand side
of the above estimation is clearly zero. Hence there is nothing to
prove. We therefore assume that the counting function N(r) has order
A. Since s>qg+1 and the genus of the function f(z) is ¢,

Ey lau ’ —3+Zy |bu | s+ oo,
As before, using this odd integer s, we define the function

h(z)=f(a C)f(a28)f(a38)-f(a30),

where £ =2z and ¢ =exp(2x i/s). Then this function h(z) is
single-valued and meromorphic in the whole finite plane, whose zeros
and poles are {a.’} and {b.°} ,respectively. Since s is an odd interger
and s<q-+2, it follows that | # —arg a,’| <s7y and |arg b.*| <s7 for v
>1, and the bound s 7 satisfies 0<s 7y <(q+2)7r <=7 /2. Furthermore
N, 0,h)=sN({,0,f), N h)=sN(r,f) and m(r’ h)<sm(r,f) for r>0. It
thereby follows that 7(,h)<sT(r,f) for r>0, so that the order A (k) of
the function h(z) satisfies A (W< A (f)/s= A /s. Since s>qg+1> A,
A(h)<1, and hence the genus of A(z) is 0 or 1.
If h(z) has genus 1, then

i N0 N (r.h)
AT TR

=0.
Indeed, since the counting function N(r)=N(r,0,h)+N(r,h) satisfies
T 2
go tN@dL< + oo,

the canonical product of the zeros of h(z) and that of the poles of A(z)
are both of genus zero. Hereby T(r,h)/r converges to some positive
value, while N(r)/r converges to zero when r tends to infinity.
Evidently

N@ 0N +N (r.f) _
T(r.f) B

so that the desired estimation is proved in this case.

0,

Iim inf
r—+00

168



Remarks on the Growth of Meromorphic Functions

If h(z) 1s of genus zero, we can apply Theorem 1 to this func-
tion A{z) and have

. N@L.O.REN (R 21— A (h)2)

lim i ST A(h)P+ A(h2cos s7°
so that

NGO NENGLP 21— A(h)?)

lim inf To. P ST AR+ Ah)icos 57 °

Since h(z) is of genus zero, the order A (h) is equal to that of the
counting function N(r,0,h)+N(r,h). On the other hand the order A (f)
of f(z) is equal to that of N(r,0,f)+N(r,f) by assumption. Consequent-
ly s A(h)= A(f), and hence the latter estimation follows. This completes
the proof.

4. Proof of Corollary 1. Let A and p denote the order and the
lower order of the function f(z), respectively. We first consider the case
where f(z) has genus zero. Evidently 0< ¢ < A <1 in this case. Hence
by assumption, the order A must be 1. It thus follows from Theorem 1
that

. NeOH+NGS)
SR

0.

We next consider the case where the genus g of the function f(z) is
a positive even integer. In this case p=2[(¢—1)/2]+1 is equal to g—1,
and s=2[(g+1)/2]+1 is g+1. Hence Theorem 2 yields ¢g—1=p< p < A
<qg+1=s, so 4 =p or A =s by assumption. Therefore we also have
the above estimation by means of Theorem 2 again.

Finally we assume that the genus g 1s a positive odd integer. Then
p=2[{g—1)/2]+1 is g, and s=2[(g+1)/2]4+1 is g+2, and Theorem 2
yields g=p< u < A <q+2=s. Hence p =p or A =s again, so that we
also obtain the above estimation. This completes the proof.

5. Examples. Let g be a positive even integer and let A, g be
arbitrary real numbers with ¢g—1<pu <g< A <g+1. Hereafter we
construct a meromorphic function with negative zeros and positive
poles, whose order is exactly A and whose lower order is not greater
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than u.
Let E(z,q) be the Welerstrass primary factor of genus ¢g. Then

log {E(—2.)/E(z.g)} =log {(1+2)/1-2)} +33 (~1r—1) =/ n
k
=log {(1+2)/(1—2)} —22 2z 1/(2n—1)
n=]
+ oo
=2 3] 2 /(2n—1),
n=k+1 N

where k=g¢g/2. Hence in the range |z|>2
log | E(—z.q)/E(z.q) | Slog(3IZI/2)+2él!le"‘l/(Zn—l)
<log(3l|z|/2)+q|z|9~ 1
Therefore we can find a positive constant A, such that

log | E(—29)/E(z.q) | <A |z]e7!

for all values of z with |z] >2. In the range [z| <1/2

-+ oo + oo
log | E(—2.q)/E(zq) | <23 |z /@n—1)<—2— 37 |z|21,
n=k+1 Q+1n=k+1

It therefore follows that
log | E(—z.q)/E(z.q) | <B,|z|e*!

for all values of z with |z| <1/2, where B, is a positive constant.
Let m be a positive integer satisfying

(@+1—p)A
M —g+D@+i— A)°

For convenience we set 7 =y —g—+1. Since g—1< ¢ <q,7 is positive
and less than one. Since ¢< A <g-+1 and the positive integer m
satisfies n(g+1— A)ym=(2— n) A, it follows that nm> A.

Let 2z be an arbitrary integer with z,> 2, and let z, be the
integer z,_," for v>2. Then {z.} is a strictly increasing sequence of
positive integers. Let {a;} be the sequence of positive real numbers
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defined with a,=z,* for 1<j<z and q;==z."* for z, ,<j<z.(v =2).
Evidently this sequence increases without bound. Let n(t) stand for the

counting function of this sequence {a,;} . It is clear by definition that
n(t)=z, for z,"* <t<z, " . Since z.4+; =z.,7,

(A/m)log t<<log n(t)< Alog t

for t>z,"*. Hence the order of n(t) is equal to A, so that

2 laj|l 9=+ oo, S a | i<+ oo,

j=1 izl

Hereby we can consider the meromorphic function

_ E(—=z/ajq)

f(z)—jz 1 E(z/a;.q)

in the whole finite plane. The zeros and poles of this function f(z) are
{—a,} and {a,} . respectively. Furthermore its order is A exactly,
and its genus is equal to the even gq.

Let r, denote the positive number z,"” for v >1. Then we can claim
that

Tr.,.)<O(r.*).

Since 1/%n —1/A >0 and m/A —1/7 >0, 4z,"* <2r. <z.."* for all
sufficiently large v . Therefore a,<r. implies a;<z."", so that r./a,
>2. Similarly if a,>r., then a;>z,,,"", and hence r,/a;<1/2. It thus
follows that for all sufficiently large v

log | f(z) | =2 log | E(—z/a;q)/E(z/a;q) |

izl

<2 A, lz/a; | 7+ B, | z/a;| "}

a,‘Sru a]'>fu

on the circle |z|=r.. Since a;>1, n{r.)=z., z,=r,” and n=py —q+1,

2 Aq | z/a; | q_léAq | z | q‘ln(ry)ZAqruq“H”:Aqru”

a;’Sru

for |z| =r.. Next we estimate the second term
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Z By | z/a; | *1=B, | z | ¢+1 Z | aj | —971,

aj>fv a,'>ru

By the definition of the sequence {a;} , a;,>r., implies a;=z,"" for
some n with n> v, and the multiplicity of the point z,”* is z,—z. 1.
Hence

2 lai]l T9I=30 (za—za—)za OTDALK Y 2,

aj>rw n>> v n>v

where 7 =1—(q+1)/ A. Since log z,=m" *log z, and m* *>(n— v )m for
n> v, we have z,>z.," ™ Furthermore since 7 <0, z,"<z," *™ for
n> v. It thus follows that

mv
3olai | i Y zr <Y (=2

mTtT
. l—Z mr gZZv
a;>ry n>v i21 v

for all sufficiently large v. Consequently, on the circle [z|=r.
log | f(z) | SAqu‘ +2B .z, "t
<Agro#+2Bgr atitmen,
so that by definition
m(r., )SA v »+2B r,aritmen
for all sufficiently large v . Note that
gt+l+mz n=qg+1—m{g+1— A} p—q+1)/ A< p.

Then we obtain m(r., f)<O(r.”) for all sufficiently large v . On the
other hand it is clear by definition that

N(r.v.f)= 2 log IL_Sn(n)log ro.=z.logr,=r.,"log r.

ajﬂfu a]

for all v. Since ¢ >n, N(r., /)=0(@.*) for all sufficiently large v .
We therefore have T(r., f)=0(r.*), as we claimed. Accordingly the
lower order of f(z) does not exceed p.
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Again let g be an arbitrary positive even integer, and let {a.} be
the sequence defined with a.= v (v >1). By n(t) we denote the
counting function of this sequence. Evidently n(t)=v for v'*<t<(v
+1)"9 so that 0<t?"—n(t)<1 for t>0. Therefore the order of this
sequence is precisely equal to ¢, and the integral §¢° t™9% n(t)dt is
surely convergent. Hence we can define the meromorphic function

E(=z/a..,q)
vzl E(Z/au,Q)

flz)=11

in the whole finite plane. This function f(z) has only negative zeros and
positive poles. Since the genus g 1s even, we have the integral
representation

log f(z)=) log{E(—z/a..q)/E(z/a..q)}

vl

_ g:wbg {E(—z/t.9)/E(z/t,q)} dn(t)

e nt)
—2>qt1 —t A4
2z go (t2—z2)t9 t
in the upper half plane, where the branch of the logarithm i1s taken so
that log f(0)=0. By means of contour integrals and residue theory,

+ oo
S 2z di=1x

0 tZ_ZZ

for any values of z=x+1iy with y>0. Accordingly

. te p(t)—t9
so that
) teoo ta—n(t)
_ +1 LA (A
]log f(Z) lﬁZqi £2|Z1q &0 |t2_22|tth

in the upper half plane. Since 0<t?—n(t)<<1 for t>0 and n{(t)=0 for
0<t<l,

+ o 1

log fla)—imar | <31z | o2 2l | o e
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for z=x+iy with |z|>2 and y>0. Taking real parts we obtain

,- | ] = 1
log | f(re'®) | + = risin q 6 'Squ 14 2ra+1 §1 | £2— 2026 | Sadt

for r>2 and 0< 6 < =. Hereby an integration yields

.4 + oo 1
| mlr, f)—rt | <3ra-142patl S S dtd 6
1

0 | $2—p2¢20 | 49

for r>2. By means of Schwarz’s inequality and Poisson’s formula,

Fis 1 2 i 1 7Z'2
40} ‘< S 4=
{ SO l t2— p2gi20 I } 0 [ t2— p2pi2 6 | 2 | t4_r4 I

for any real pair ¢ and » with t# +r. It therefore follows that

+ oo T + oo
X S ] a’@dtgg z di

g U 1
=znr Xl/r [ 1—s4 | 1/zsqu’
so that for any real »r>2
XMX" 1 d6dt<Cra1 L
- —q— —q— —9q
1 0 | t2—r2ei20 | ta t=sbr termr Xl/rs ds
27
<Cr-9l4-——=—
(@—D)r?

with a positive constant C. Interchanging the order of the integrations
we thus have

| m(r.f)—r? | <3r?-14-2C+ Dra-1
with a positive constant D. Consequently
| m(r.f)—r? | <O(re-1),

and hence m(r, f)/r° converges to 1 as r tends to infinity. On the other
hand it is clear that N(r)= N(r, f, 0)= N(r, f) and

0< X 1914t — N(r)<log r
1
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for r>0. Hence N(r)/r? converges to 1/q when r tends to infinity. We
consequently have

o L) g+l
? q

li

row

’

so that the order of the function f(z) Is equal to the even integer q.
Furthermore it follows that

NGO NENCRS) 2
MRS gt
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