Factorization of Periodic Entire Functions

By Tadashi Kobayashi

We say that an entire function F(z) = f(g(z)) has f(z) and g(z) as left
and right factors respectively, provided that f(z) and g(z) are both
meromorphic functions. Such a composition f(g(z)) is called a factoriza-
tion of F(z). An entire function F(z) is said to be prime if every
factorization of the above form implies that either f(z) or g(z) is a
linear function.

In the paper [4] Gross posed an open question whether there exists a
periodic entire function which 1s prime. This question was resolved by
Ozawa [8] positively. In fact he succeeded to construct a prime periodic
entire function of order one. Subsequently several interesting such
entire functions have been found [2], [9], [12].

The purpose of this paper is to present a method by which prime
and periodic entire functions can be constructed. Our method is very
elementary in principle. In what follows we assume acquaintance with
the standard terminology and the fundamental concepts of Nevanlinna
theory, and we use them without further introduction.

1. Statement of results

Let {a.} and {b,} be sequences of distinct complex numbers, tending
to infinity, such that a,+# 0, b,# 0 and a. # b, for any m and n.
Let {p.} and {q.} be sequences of distinct prime numbers such that
P23, q¢.=23 and p, #+ q. for any m and n. Now assume that the
series

(1.1) 2z Plloglaa)™®, 20 5, qalloglbal)®

are both convergent for some positive numbers @ and 8. Then it is
clear that the series 2. p.la.| ™' and D q./b.| ' are also convergent.
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Therefore the canonical products
#n

(1.2) AR) =10, (1“2“) ,
(1.3) Blz)=1I,, (1——%)q"

both converge and represent transcendental entire functions. The
former function A(z) vanishes only at the points a, and their
multiplicities are equal to the prime numbers p,, respectively. It follows
from the definition (1.2) that

log| A2)| = 3, pog(l + )

n

(1.4) - Sm log(1 + Z)dn(z)
0 4
_ (T
o rgo t(t+r) at
for all values of z with |z| = r, where n(t) = n(t, 0, A). It also follows

from (1.1) that
(1.5) n(r, 0, A)log r)™* = 20 ., pllogla.])~"
for r>0. Combining this (1.5) with (1.4) we thus deduce
(1.6) log M(r, A) = O {(log r)'**}

as r tends to infinity, where M(r, A) stands for the maximum modulus
of A(z) on |z| = r. Similarly the entire function B(z) vanishes only at
the points b, and the multiplicities of b, are equal to the prime
numbers g, respectively. With the help of (1.1) and (1.3) we can also
have

(1.7) log M(r, B) = O {(log r)'**}

as r tends to infinity.

Let a(z) and b(z) be nonconstant rational functions which are regular
in 0<|z| <4 oo. Assume that a(z) or b(z) has a pole at the point at
infinity, and that a(z) or b(z) has a pole at the origin. Assume further
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Factorization of Pericdic Entire Functions

that for any n, the equations a(z) = a, and b(z) = b, have no multiple
roots, and that for any pair m and #n, the equations a(z) = a, and
b(z) = b, have no common solutions.

Under these notations and assumptions we consider the function

(1.8) F(z) = Ala(e))B(b(e").

Since the rational functions a(z) and b(z) are regular in 0<|z| <4 oo,
the functions a(e®) and b(e*) are both regular in the whole finite plane.
Hence the above function F(z) is entire and periodic with period 2 7 1.
Furthermore since a(e*) and b(e*) are of exponential type, by means of
(1.6) and (1.7), the function F(z) must be of finite order. By the above
assumption that either a(z) or b(z) has a pole at the origin, either
A(a(z)) or B(b(z)) has an essential singularity at there. In fact if a(z)
has a pole at the origin, it is possible to find a sequence {z.} tending to
zero such that a(z,) = a., because the sequence {a.} tends to infinity. It
i1s clear by the definition (1.2) that all the points z, are zeros of the
composite function A(a(z)) which is not constant zero. Hereby A(a(z))
has an essential singularity at the origin. Consequently the prod-
uct A(a(z)) and B(b(z)) 1s certainly not meromorphic in the whole finite
plane.
Our results are the following

Theorem 1. Assume that the function F(z) admits a factorization
f(g(z)) with nonlinear entire f(z) and transcendental entire g(z). Then
the right factor g(z) is periodic and of exponential type, and there
exist two polynomials P(z) and Q(z) such that ale’) = Plg(z)) and
b(e®) = Q(g(z)). Furthermore the rational functions a(z) and b(z) both
have poles at the point at infinity and at the original point
simultaneously.

Theorem 2. Assume that the function F(z) admits a factorization
f(g(z)) with transcendental entire f(z) and nonlinear polynomial g(z).
Then the rational functions a(z) and b(z) satisfy a(z) = a(w /z) and
b(z) = b(w /z) with a nonzero constant .

Theorem 3. Assume that the function F(z) is prime in the family
of entire functions. Then F(z) is prime.
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Assume that the function F(z) is not prime. Then by virtue of
Theorem 3, F(z) admits a nontrivial factorization F(z) = f(g(z)) with
entire functions f(z) and g(z). Assume temporarily that the right factor
g(z) is polynomial.” Then by means of Theorem 2, the rational
functions a(z) and b(z) satisfy a(z) = a(w /z) and b(z) = b(w /z) for
some nonzero constant . It therefore follows that

alz) = 2. a, {Z+(w/2)}, bz) = 3", B {z+(w/2)},

where m>0, n>0 and a,, B; are constants with a,#0, B8,#0. In
particular, a(z) and b(z) both have poles at the origin and at the point
at infinity, simultaneously. On the other hand it is well known that for
each nonnegative integer k, there exists a polynomial C«z) of degree k
which satisfies Ciz+ @ /z) = z*4+(w /z)*. Using these polynomials Ci(z)
we easily deduce

alz) = X7, a,Ciz+ w/z) = Plz+ w/z),
bz) = 3,2, BiCiz+ ©/2) = Qz+ w /2),

where P(z) = 31" a,C{2) and Q(z) = 1), B,C/(2), that is, P(z) and
Q(z) are polynomials of degree m and n, respectively. It thus follows
that

ale’) = P(h(z)), ble&") = Q(h(2)),

where h(z) = e¢*+ w e *. Evidently this function A(z) i1s periodic and
entire of exponential type. Combining this observation with Theorem 1
we at once have the following conclusion.

Theorem. Let {a,} and {b.} be sequences of distinct complex
numbers, tending to infinity, such that a, + 0, b, ¥ 0 and a. # b, for
any m and n. Let {p,} and {q.} be sequences of distinct prime numbers
such that p, =3, q. =23 and p. ¥ q. for any m and n. Let a(z)
and b(z) be nonconstant rational functions which are regular in
the annulus 0<|z| <4+ such that a(z) or b(z) has a pole at the
origin, and a(z) or b(z) also has a pole at the point at infinity.
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Factorization of Periodic Entire Functions

Suppose that the series

2,2, Palloglaal) e, 2z, aloglb.l)*

are both convergent for some positive a and B . Suppose further
that for any n, the equations a(z) = a, and b(z) = b, have no multiple
roots, and that the equations a(z) = a., and b(z) = b, have no common
solutions for any m and n.

Let F(z) be Alale))B(ble?)), where A(z) and B(z) are the canonical
products defined by

Z P’I Z QYI

AR) =TI ., (1—71) . Br =T, (1—7,1)
Then F(z) is a periodic entire function of finite order, and a necessary
and sufficient condition that this function F(z) is not prime is that
there exist two polynomials P(z), Q(z) and a periodic entire function

h(z) of exponential type such that a(e’) = P(h(z)) and b(¢*) = Q(h(z)).

2. Lemmas
We need several known results.

Lemma 1 [10). Suppose that f(z) and g(z) are entire functions and
that the composite f(g(z)) has finite order. Then either f(z) is of order
zero or g(z) is a polynomial.

Lemma 2 [1], [3]. If f(2) is any nonconstant entire function of order
less than 1/2 and g(z) is entire, then the composite function f(g(z)) is
pertodic if and only if the right factor g(z) is. Furthermore the period
of g(z) is an integral multiple of that of f(g(z)).

Lemma 3 [11]. Let f(z) be an arbitrary nonconstant entire function,
and let g(z) be an arbitrary polynomial. [f the composite function
f(g(2)) is periodic, then the degree of g(z) is at most two.

The next fact is nothing but Nevanlinna's second main theorem for
entire functions of finite order.

Lemma 4 [6]. Let f(z) be a nonconstant entire function of finite
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order, and let a,, -++, a, where n = 2, be distinct finite complex
numbers. Then

{n=1+o} T(r, H =X, N(r, ay f)

as r tends to infinity.
Lemma 5. Let f(z) be

> ciexp(kz),

where m and n are positive integers and c. are constants with
cm#F0and c. #0. Then T(r, f) ~ (m+n)r/n, and T(r, f) ~ N(r, w, f)
for any finite complex number w.

Proof of Lemma 5. Let R(z) be Z].’;_m c;z’, and let P(z) be z"R(z).

Then it is clear that f(z) = R(e*). Let w be an arbitrary finite complex
number. Since neither ¢_,, nor ¢, is zero, the polynomial P(z)—wz™ is of
degree m+n and does not vanish at z = 0. Hence there exist m—+n
nonvanishing finite complex numbers s;, 53, -+, Sam+a such that

PR —wz" = c,11|" (z—s)).

It therefore follows that

f@)—w = Re)—w = cexp(—m2) ;" (€—s,),
so that we easily have

NG, w, )= 300" Nir, s, &)~ (m+n)r/ |

This completes the proof of Lemma 5.

3. Proof of Theorem 1
Let us begin by proving the following property of the function F(z).

Lemma A. There exists a sequence {s,} of zeros of F(z) such that
the real parts of s, tend to positively infinite as n goes to infinity.
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Factorization of Periodic Entire Functions

There also exists a sequence {t.} of zeros of F(z) such that the real
parts of t, tend to negatively infinite as n does to infinity.

Proof of Lemma A. By assumption a(z) or b6(z) has a pole at the
point at infinity. For instance suppose that b(z) has a pole at the
infinity. Since the zeros b, of the canonical product B(z) approach the
infinity, it is possible to find a sequence {w,} tending to infinity such
that b(w,) = b,. Here we set s, =logw, with a suitable choice of
branch. Evidently F(s,) = 0 and the real parts of s, tend to positively
infinite. This i1s precisely what we have to prove. Similarly we can also
construct the sequence {t.} required in the latter statement. This
completes the proof of Lemma A.

Assume that the function F(z) has a nontrivial factorization

Q.1 F(z) = f(glz)),

where f(z) is a nonlinear entire function and g(z) i1s a transcendental
entire function. Since F(z) is of finite order and the right factor g(z) is
transcendental, the left factor f(z) has zero order by Lemma 1. It
thereby follows from Lemma 2 that the right factor g(z) is periodic
with period 2k m i, where %k is a positive integer.

By the definition (1.8), a zero of the function F(z) is also a zero of
Alal(e®)) or B(b(e*)). Hence it satisfies either a(¢’) = a, for some m,
or b(¢®) = b, for some n. By the assumptions on the rational functions
a(z) and b(z), for every j, the equations a(e®) = a;, and b(e*) = b, have
no multiple solutions. Furthermore for an arbitrary pair z and j, the
equations a(e*) = a; and b(e*) = b, have no common solutions. Hereby if
a zero of F(z) satisfies a(e®) = a., then its multiplicity must be equal to
the prime number p,. Similarly a zero of F(z) satisfying b(e*) = b, is
multiple and its order 1s equal to the prime g,.

Lemma B. Let u be a simple zero of the left factor f(z). Then all
the roots of the equation g(z) = u have multiplicities at least 3. Let v
be a multiple zero of f(z). Then all the roots of the equation g(z) = v
are simple and satisfy ale’) = a, for some m, or ble’) = b, for some
n. In the former case the multiplicity of v is the prime number p,,
and in the latter case it is equal to the prime number q..
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Proof of Lemma B. Let u be a simple zero of the left factor f(z),
and let s be a root of the equation g(z) = u. Then F(z) vanishes at this
point s by (3.1), so that f(g(z)) has a zero at s with multiplicity p,. or
g.. Since the numbers p. and ¢, are prime, the point s must be a
multiple root of g(z) = u, and its multiplicity is equal to p, =3 or
gn = 3.

Let v be a multiple zero of the left factor f(z). Assume for a
moment that g(z) fails to take the value wv. Since F(z) is of finite
order, g(z) also has finite order. Hence g(z) = v+exp(P(z)) with a
polynomial P(z). On the other hand g(z) is periodic and its period is an
integral multiple of 27 :. It thus follows that P(z) is linear and has the
form az+ B, where a is nonzero real. Thereby g(z) converges to the
value v when the real part of z tends to positively infinite or negatively
infinite according to whether a is negative or positive. Suppose the
former for definiteness. By the above Lemma A there is a sequence
{s.} of zeros of F(z) such that the real parts of s, become positively
infinite as n grows. It therefore follows that all the points g(s, are
zeros of f(z) and they converge to the value v. Since g(s,) # v for any
n, the function f(z) vanishes identically. This is absurd. Consequently
the equation g(z) = v has at least one root. Let s be arbitrary such a
root. Of course, F(s) = f(g(s)) = f(v) = 0. Hence the point s satisfies
a(e’) = a, for some m, or b(e) =0b, for some n. In the former
case f(g(z)) has a zero of multiplicity p,. at s. Since the zero v of f(z)
1s multiple and the number p,. is prime, the root s of g(z) = v must be
simple and the multiplicity of the zero v of f(z) is exactly equal to p,.
Similarly for the latter case the point s i1s a zero of f(g(z)) of
multiplicity g.. Hence the equation g(z) = v has a simple root at s, and
the multiplicity of the zero v of f(z) 1s equal to the prime ¢,. Lemma B
is now proved.

By this Lemma B the function f(z) has at least two zeros. Indeed
if f(z) has only one zero, then it must be simple by Lemma B.
Hence f(z) reduces to a linear function, because f(z) is of order zero.

Let u be a simple zero of f(z). Then by means of Lemma B all the
roots of the equation g(z) = u are multiple and their multiplicities are
at least three. We hence have
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Factorization of Periodic Entire Functions

(3.2) N(r,u, g(z)) = 3 N(r, u, g(z))

for all values of r>0. Accordingly with the help of Lemma 4 the
function f(z) has at most one simple zero.

Let v be a multiple zero of f(z). It then follows from Lemma B
again that all the roots of g(z) =wv are simple and they satisfy
either a(e’) = a,. for some m, or else b(e*) = b, for some n. We thus
have

(3.3) N(r, v, g(z)) = O(r),

because the functions a(e®) and b(e®) are of exponential type. On taking
(3.2) and (3.3) into account we consequently have 7(r, g) = O(r) by
Lemma 4 again, that is, the function g(z) is of exponential type.

Lemma C. The right factor g(z) can be written as
(3.4) gz) = 31, cexpliz/k),

where k, m and n are positive integers, and c; (—m = j = n) are
constants with ¢ .+ 0, ¢, # 0.

Proof of Lemma C. We have already pointed out that the right
factor g(z) is periodic and its period is an integral multiple of 27 1.
Hence g(z) satisfies g(z) = g(z+2k 7 1) with a positive integer k. Hereby
the function

(3.5) R(z) = g(klog z)

1s single-valued and regular in the annulus 0<<|z| <+ oc. Let r be any
finite complex number, and let w,, w,, ..., w;, be any distinct [ roots of
the equation R(z) = 7 in 0<l|z|<+ooo. For every 7, by the definition
(3.5), all the roots of exp(z/k) = w; satisfy g(z) = R(w,) = 7. [t therefore
follows that

{
2y N(r, w, exp(z/k) = N(r, 1, g(z))
for r>0, so that
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Ir < krn {T(r, g(z))+0(1)}

as r tends to infinity. Since g(z) is of exponential type, the number [
cannot exceed some finite bound. This means that for any finite
complex number 7, the equation R(z) = 7y has only a finite number
of roots in the annulus 0<|z|<+oc. Hereby R(z) is a rational
function. Suppose now that R(z) is regular at the origin. With the help
of Lemma A we can take a sequence {t,} of zeros of F(z) such that
the real parts of ¢, become negatively infinite as n goes to infinity. It
thus follows that f(g(t.)) = 0 for any n and exp(t./k) converges to 0 as
n tends to infinity. On the other hand by the definition (3.5), we
deduce

(3.6) g(z) = R(exp(z/k)).

Hereby g(t,) converges to the finite value R(0) when 7n tends to
infinity. It thus follows that f(z) vanishes identically or R(z) is a
constant. This is a contradiction. Accordingly the rational function R(z)
must have a pole at the origin. Similarly by making use of Lemma A
and (3.6), we can see that R(z) also has a pole at the point at infinity.
Consequently R(z) has the form

(3.7) Riz)=3%"_ ¢

with m>0, n>0 and c-, # 0, ¢, # 0. Combining this (3.7) with (3.6),
we deduce the desired (3.4). This completes the proof of Lemma C.

With the help of Lemma 5 and this Lemma C we at once have
(3.8) T(r, g(z)) ~ N(r, w, g(z)) ~ (m~+n)r/kn

for any finite complex number w. For the functions a(e®) and b(e?),
using exactly the same argument as in the proof of Lemma 5, we can
also see that

(3.9) T(r, a(e®)) ~ N(r, w, ale’)) ~ axr/ 7,
(3.10) T(r, ble)) ~ N(r, w, ble*)) ~ byr/ =«
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Factorization of Periodic Entire Functions

for every finite complex number w with two possible exceptions,
where ax and by indicate the orders of a(z) and b(z), respectively.
We now consider the set of complex numbers

S={az):'Rz=0})U{b=z):R((=z)=0},

where R(z) is the rational function defined with (3.5), and %k 1s the
positive integer appeared in (3.4). Evidently the derivative of R(z) has
at most m + n zeros in the whole finite plane, so the above set S
consists of at most 2(m + n) points.

Let a, be an arbitrary complex number of the sequence {a,} which is
not contained in the set S and satisfies

3.11) T(r, ale’)) ~ N(r, a,, ale?)).

Let s be an arbitrary root of the equation a(e®) = a,.. Then this point s
is a zero of F(z) with multiplicity p.. Hence by (3.1), either g(s) is a
zero of f(z) of order p,, or else g(z)—g(s) has a multiple zero at this
point s. Suppose that the latter case occurs. Then g’ (s) = 0, so that
R’ (exp(s/k)) = 0 by means of (3.4) and (3.6). Consequently the value
ale’) = a, must be an element of the set S. This is absurd. Hereby
g'(s) # 0 and the point g(s) is a zero of the left factor f(z) of
multiplicity p.. Conversely let v be an arbitrary zero of f(z) of order
p.. Then by virtue of Lemma B all the roots of the equation
g(z) = v are simple and satisfy a(e’) = a,. We hence find that the set
of points { g(z) : ale’) = a,. } surely coincides with the set of all the
zeros of f(z) of order exactly p,. Let wy,, w; ..., w, be any [ zeros
of f(z) of order p,. Then 1t follows that

N1 N, w, g(2)) < Nir, a,, ale)

for r>0, so that I(m + n) = axk by means of (3.8), (3.9) and (3.11).
This means that the number of the zeros of f(z) of order p. must be
finite. We denote these zeros with u;, u., .., wu, that is, the set
{ g(z):a(e*) = a, } consists of [ points u,, u;, ..., w.. This time we have
the equality
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311, NG, w, g2) = NG, a,., a(e)

for r>0. Hereby we have Il(m + n) =< axk by (3.8), (3.9) and (3.11)
again. Furthermore we at once have the representation

(3.12) ale)—a, = explaz+ B) I _, (g(z)—wu)

with constants @ and B8. Because of the periodicity, exp(az+ ) is
periodic with period 27 i. Thereby « %k is an integer. Inserting the
representation (3.4) into this (3.12) we consequently have

(3.13) a()—a, = Cz' TI,_, (R(z)—u,).

where s is an integer and C is a nonzero constant. Since the rational
function R(z) has a pole of order m at the origin, if {m—s>0, the
rational function a(z) also has a pole of order (Im—s)/k there. If
Im—s = 0, then a(z) is regular at the origin. Similarly since R(z) has a
pole of order n at the point at infinity, if in+s>0, a(z) also has a pole
of order (In+s)/k there, and it is regular there when In+s=<0. Here we
should remark that the integral quantities [ and s are both independent
of the complex number a,.

Let a. be another complex number of the sequence {a,} which is not
in the set S and satisfies

T(r, ale®)) ~ N(r, a,, ale?)).

Then, just as before, the number of the zeros of f(z) of multiplicity
p. is exactly equal to [ = axk/(m+n), and we have the expression

(3.14) a(z)—a, = Dz’ I1,_, (R(z)—v)),

where D is a nonzero constant and vy, v, ..., v, are the zeros of f(z) of
order p,. Comparing this (3.14) with the above (3.13), we deduce

(3.15) z%a,~a,) =C T ., (RE@)—u)—D T,_, (Rz)—v,).

Evidently if the right side of this identity is not a constant, it has poles
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Factorization of Periodic Entire Functions

at the origin and at the infinity, while the left side is regular at the
origin or at the infinity. Hereby the both sides of (3.15) must be
constant and hence the exponent s must be zero. Accordingly the
above (3.13) becomes

a()—a, = C I1,_, (R@)—u).

We consequently have a(z') = P(R(z)), where P(z) is a polynomial of
degree [. Setting z = exp(z/k) we at once obtain a(e’) = P(g(z)) by
means of (3.6). Furthermore by the form (3.7) the rational function a(z)
has a pole of order {m/k at the origin and has a pole of order In/k at
the point at infinity.

Quite similarly for any complex number &, of the sequence {b,} such
that b, is not in the set S and

T(r, b(e)) ~ N(r, b,, ble*)) ~ byr/ 7,
taking account of (3.8) and (3.10), we also have the identity

b(z)—b, = Cy I1,_, (R(z)—uy),

where A is the positive integer bik/(m+n), and wu,, u., ..., u, are all the
zeros of f(z) of multiplicity just q,, and Cx 1s a nonzero constant. We
therefore obtain the expression b(z") = Q(R(z)), where Q(z) is a
polynomial of degree bik/(m+n). It is plain from (3.6) that
ble®) = Q(g(z)). It is also plain from (3.7) that the rational function b(z)
has poles at the origin and at the point at infinity simuitaneously. The
proof of Theorem 1 i1s now complete.

4. Proof of Theorem 2

We suppose that the function F(z) admits a nontrivial factorization
f(g(z)), where f(z) is a transcendental entire function and g(z) is a
nonlinear polynomial. Since F(z) is periodic with period 27 i, by
virtue of Lemma 3, the right factor g(z) is a quadratic polynomial.
Hence we may set g(z) = z(z+c¢) with a constant ¢. Obviously
g{—z—c) = z(z+c) = g(z), so that the function F(z) satistfies
F(z) = F(—z—c). Hereby if s is a zero of F(z) of order n, the point
—s—c is also a zero of F(z) and its order is the same n.
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Let a. be an arbitrary complex number of the sequence {a,}, and
let s be an arbitrary root of the equation a(e’) = a.. Because of the
manner in which the function F(z) has been constructed, the point s is
a zero of F(z) of order p,. Thereby the point —s—c is also a zero of
F(z) of order p, and hence the point —s—c¢ is a root of a(e’) = an.
This means that for every a., all the roots of the equation a(z) = a.
are zeros of the rational function a(z)—a(w /z), where w = exp(—c¢).
We consequently have a(z) = a(w /z), in the whole plane. The same
holds for the rational function &(z). This completes the proof of
Theorem 2.

5. Proof of Theorem 3

Throughout this section we assume that the function F(z) is prime in
entire sense, that is, if F(z) has a factorization f(g(z)) with two entire
functions f(z) and g(z), then either f(z) or g(z) is linear. Our goal is to
show that the function F(z) must be prime under this hypothesis.
Suppose that F(z) admits a factorization

(5.1) F(z) = f(g(2),

where f(z) and g(z) are meromorphic functions in the whole finite
plane. We may further suppose that the left factor f(z) or the right
factor g(z) is not entire. If f(z) has a pole at a point s, then g(z) omits
the value s. Hence the number of poles of f(z) is at most two. If the
right factor g(z) has a pole, then the left factor f(z) must be regular at
the point at infinity. Hereby f(z) reduces to a rational function. In
particular the case where f(z) is entire and g(z) has a pole is
impossible.

We first consider the case where f(z) has exactly two poles. In this
case g(z) fails to take two finite values. Hence g(z) must have a pole.
Therefore f(z) is rational and has the form

(5.2) flz} = (z— W) ™(z—v)"P(2),

where m and n are positive integers and P(z) is a polynomial of degree
m+tn

at most m+n with P(u)P(v) #+ 0. Here we may set P(z) = Z,‘:o 72,
On the other hand the right factor g(z) can be written as
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5.3) EE Y _ cxplhiz)
glz)—v

with a nonconstant entire function h(z). Since F(z) has at least order
one and maximal type, and the left factor f(z) is rational in this case,
this function A(z) i1s not linear. Using these representations (5.2) and
(5.3), after a simple calculation, we deduce

(5.4) F(z) = f+(h(z)),

m+n

f(z) = (u—v)™" "exp(—mz) 20 _ v (u—vey(l—ey .

Evidently f«(z) 1s an entire function, and exp(mx)f«(x) converges to
the nonzero value (u—wv) " "P(u) when the real variable x becomes
negatively infinite. Hereby f«(z) is not constant, so it is transcendental.
Therefore the above (5.4) is another factorization of F(z), and its left
and right factors are both nonlinear entire functions. This is a
contradiction.

We next consider the case where f(z) has only one pole and g(z) also
has poles. In this case f(z) must be of the form

(5.5) f(z) = (z—u)"P(=2),
where m 1s a positive integer and P(z) is a polynomial of degree at

most m satisfying P(u) # 0. Since the right factor g(z) omits the value
u,

(5.6) gx(z) = 1/(g(z)—wu)

1s a nonconstant entire function. On combining (5.5) and (5.6) we thus
obtain the representation

(5.7) F(z) = (g«(z))"P(u+1/g«(z))
= 3070 7 A1 +ugsR)(gslz)" 7,
where P(z) = ZJ:O 7 ;2. Here let us set

Q(z) = Z]:o Y (1+tuzyz"".
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Since z "Q(z) converges to P(u) when =z tends to infinity, this
polynomial Q(z) is of degree exactly m. Using the polynomial Q(z) we
can rewrite the above expression (5.7) and deduce another factoriza-
tion F(z) = Q(g«(z)). Evidently two factors @Q(z) and g«(z) are entire
functions. It therefore follows from the hypothesis on F(z) that the left
factor Q(z) must be a linear function, so that the degree m must be
one. Consequently by (5.5), the original left factor f(z) is certainly a
linear function. Hereby the factorization (5.1) is trival in this case.

Finally we consider the case where f(z) has exactly one pole
and g(z) is an entire function. We may set

(5.8) f(z) = (z — u)"K(z),

where K(z) is an entire function with K{(u) # 0 and m is a positive
integer. The right factor g(z) omits the value u, and hence with some
nonconstant entire function A(z),

(5.9) g2(z) = u+exp(h(z)).
It therefore follows from (5.8) and (5.9) that
(5.10)  F(z) = f«(h(2)), f+(z) = exp(—mz)K(u+e).

Since exp(mz)f«(z) converges to K(u) as ¢ tends to zero, the function
f«(z) is transcendental entire. Hereby with the help of the hypothesis
on the function F(z), the right factor A(z) must be linear. We therefore
have from (5.10) that

(5.11) F(z) = exp(—maz—m B)K(u+exp(az+ B)),

where a and B are constants with a # 0. Evidently F(z+2 7 i/ a) = F(z),
so that the nonzero constant a is real. For definiteness we may
suppose that « is positive. Then by means of Lemma A there exists
a sequence {t,} such that F(¢,) =0 for any n and the sequence
{exp(at,+ B)} converges to 0 as n goes to infinity. This means from
(5.11) that the entire function K(z) vanishes at all the points
u+texplat,+ B), so that K(u) =0 by continuity. This is a contradic-
tion. Hereby this case is impossible. Consequently the factorization (5.1)
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i1s always trivial, so that F(z) is a prime entire function. This completes
the proof of Theorem 3.

6. Examples

In this final section we shall present several periodic entire functions
which are prime. Before proceeding we want to prove the following
final lemma for completeness.

Lemma D. Let {p.} and {q.} be arbitrary sequences of distinct prime
integers such that p, 2 3, q. 2 3 and p. # q. for any m and n. Let
a(z) and b(z) be arbitrary nonconstant rational functions which are
regular in the annulus 0<|z|<+oo. Then for any two positive
numbers a and B, there exist two sequences {a,} and {b,} of distinct
complex numbers, tending to infinity, such that a,+# 0, b,+# 0,
a, + b, for any m and n, and the series

(6.1) 2.2, Pllogla.l) e, 2zt 9nlloglb,|)?
are both convergent, and all the roots of the equations a(z) = a, and

b(z) = b, are simple only, and the equations a(z) = a, and b(z) = b,
have no common solutions for any m and n.

Proof of Lemma D. First of all we define the set of points
S = {alz):a’(z) = 0} U {blz):b (z) =0} .
Obviously this set S consists of a finite number of points. We take a
point a; such that a; is not iIn S, |a;| =1, and (logla:})® = p1. We next
consider the set defined with

A =SU {a} U {bz):alz) = a} .

This set A, i1s also a finite set. We take a point b, such that &, i1s not
in A,|b| =1 and (loglb, |)? = g;. Similarly we set

B, =AU {bl} U {a(z): b(z) = b},

\Y

and take a point a; of the complement of B, satisfying |a;|] = 2 and
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(loglaz|)* = 4p.. Using this point a, we further define the finite set
A; = BU {a:} U {b(z) : a(z) = a:},

and take a point b, of the complement of A; satisfying | b.| 2 2 and
(log|b;|)? = 4q,. We continue this process indefinitely, and obtain
successively two sequences of finite sets of points {A.}.z1, {B.}.z1 and
two sequences of complex numbers {a@,}.z1, {b.}.21 such that for every
n=1,

6.2) a Zn  (ogla)® = npa
6.3) bl Z 0, (oglb))* Z g,
(6.4) A= B.aU {a} U {b(): a(z) = a},
(6.5) B, = AU (b} U {az): bz) = b} ,

and a, is not in the set B,.,, and b, is a point of the complement of
the set A, where we set B, =S for convenience. By means of (6.2)
and (6.3), the sequences {a,} and {b.} both tend to infinity and the two
series (6.1) are plainly convergent for the positive numbers a and B,
respectively. It is clear from (6.4) and (6.5) that B,., C A, CB, for all
n = 1. Hereby all the sets A, and B, contain the set S. Since the
point a, is not in the set B,_;, a, is not in the set S either. It thus
follows that the equation a(z) = a. has no multiple solutions. Similarly
the point b, is not in A, , so b, is not in the set S. Hereby all the roots
of the equation b(z) = b, must be simple. We take arbitrary two points
a,. and a, with m<n. The point a, is not in the set B,_,, while a, 1s a
point of the set A, by (6.4). Since A, C B,-, by m<n, the points a.
and a, are different. Similarly b,. # b, for any different m and n. We
next take arbitrary two points a,. and b, . Again, a. and b, are points
of the sets A,—B.-1 and B,—A,, respectively. If m = n, then A, C A,,
so that the point b, is not in the set A,. Hereby a, # b,, and b, is not
contained in the set {b(z):a(z) = a.} by means of (6.4). It thus follows
that the equations a(z) = a,. and b(z) = b, have no common roots. If
m>n, then B, C B,..,, so that a, is not in B,. Hence a, # b,, and a. is
not in the set {a(z):b(z) = b,} by (6.5). Consequently the equations
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a(z) = a» and b(z) = b, have no common solutions. This completes the
proof of Lemma D.

Example 1. Let {p,} and {q.} be sequences of distinct prime integers
satisfying p, = 3, q. =2 3, and p,. # ¢q. for any m and n. Let a(z) be an
arbitrary nonconstant polynomial. Let us set b(z) = 1/z. The rational
functions a(z) and b(z) are both regular in 0 <|z| <4 o0, and a(z) has a
pole at the infinity while b(z) has a pole at the origin. With the help of
the above Lemma D there are two sequences {a,} and {b.} of distinct
complex numbers which satisfy the required properties. Consequently
using these four sequences {a.}, {b.}, {p.} and {q.}, and the rational
functions a(z) and b(z), we can define the periodic entire function

F(z) = Ala(e)B(ble*)) = Alale?))Ble™),

where A(z) and B(z) are the canonical products

b, 9n

66  A@=1,, (1-—). B@=I, (1-).

n

If F(z) is not prime, by virtue of Theorem 3, the function F(z) satisfies
the hypotheses of Theorem 1 or 2. It therefore follows that the rational
functions a(z) and b(z) both have poles at the origin and at the point
at infinity. Accordingly the function F(z) 1s certainly prime.

Example 2. Let {p,} and {q,} be as above. Let {a.} and {b.} be
arbitrary sequences of distinct complex numbers, tending to infinity,
such that a,#0, a,#=%2, b,#0, b, +21 and a.F b,
(am+b.)an—b,) +# 4 for any m and n, and further the series (6.1) are
both convergent for some positive @ and 8. We set a(z) =z+1/z
and b(z) = z—1/z. Then the rational functions a(z) and b(z) are regular
for 0<|z| <+ o0, and have poles at the origin and at the point at
infinity  simultaneously. Since (a(z)*—(b(z))) =4, the equations
a(z) = a, and b(z) = b, have no common solutions for any pair m and
n. Of course, by the conditions a, # +2 and b, # +2i, all the zeros of
a({z)—a, and b(z)—b, must be simple. Here we set

F(z) = A(ale?))B(b(e?)) = Ale*+e *)Ble*—e ™),

145



where A(z) and B(z) are the canonical products defined by (6.6). If this
function F(z) is not prime, by virtue of Theorem, we can find two
nonconstant polynomials P(z) and Q(z), and a nonconstant entire
function A(z) which satisfy

ale*) = P(h(z)), be) = Q(h(z)).

It then follows that (P(z))*—(Q(z))? = 4. This is a contradiction. Hereby
the function F{(z) must be prime.

Example 3. Let a(z) and b(z) be the rational functions
a(z) = 2'+62°—252—9z '+z7%
b(z) = 2 +3z+z7",
respectively. Let P(z) and Q(z) be the polynomials
P(z) = zf—152°+ 30, Q(z) = 23,
respectively. Then by a routine computation we can see that
a(z’) = P(z7'+2Y), b(z’) = Q(z'+27).
It therefore follows that
ale) = Plg(z),  ble) = Qle(2)
with g(z) = exp(—z/3)+exp(2z/3).
Using these rational functions a(z) and b(z) we construct an entire
function F(z) of the form A(a(e?))B(b(e*)). Evidently F(z) = f(g(z)) with
the transcendental entire functions f(z) = A(P(z))B(Q(z)) and g(z).

Thereby the function F(z) admits nontrivial factorizations, that is, F(z)
is not prime. This is an example of Theorem 1.

Example 4. We f{inally present an example for Theorem 2. Let @ be
an arbitrary nonzero complex number, and let ax(z) and bs(z) be
arbitrary nonconstant polynomials. We set a(z) = ax(z)+ax(w /z) and
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b(z) = by(z)+bs(w /z). Then it is clear that a(z) and b(z) are both
rational and satisfy a(z) = a(w /z) and b(z) = b(w /z), so that we have
the representations

a(z) = 22, a,Clz+ /2), bz) = 2, B.Ciz+ @ /z),

where Cji(z) are the polynomials as in the section 1. Furthermore it is
also clear that

e+ we * = exp(— 7) {exp(z+ 7 )+exp(—z— 1)}
= exp(— 7)D((z+ 7)),

where D(z) denotes the entire function exp(z”“?)+exp(—z'?), and 7 is a
constant with @ = exp(—27 ). We can therefore take two entire
functions U(z) and V(z) which satisfy

a(e’) = Ulz+ 1)), ble’) = V((z+ 7))

Consequently an entire function of the form A(a(e’))B(b(e‘)) has certainly
a factorization f(g(z)) with a transcendental entire f(z) and a quadratic
polynomial g(z).
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